if compressibility can serve as measure of entropy...
Very-pseudo...
Call it mad science, but I was quite amused with what follows. Let's consider 2 solutions to OP task:
- supf i.e. "shuffle/unshift/push/first"
- mrcs i.e. "matrix rows/columns shuffle"
The former by tybalt98, code almost verbatim from 11154602, and the idea for the latter suggested by LanX. Other than "(almost) equidistant most frequent key(s)", I had no solid basis to say "very-pseudo", but gut feeling only. The mrcs is, as I said, quite visual and therefore e.g. OK as a demo to teach students. I didn't add error checking, neither optimized for speed (it won't become faster than supf, but fast enough already). Here's "result predictability" measurement:
Looks like "supf" provides 100% of possible entropy
Looks like "mrcs" provides 67% of possible entropy
This is for entertainment only, I don't think I'm qualified for "what's randomness?" discussion.
use strict;
use warnings;
use feature 'say';
use List::Util qw/ first shuffle max /;
use Compress::Zlib 'compress';
use POSIX 'ceil';
use constant ITEM => qr(< \d+ >);
my @input = fake_data( 555, 55 );
#say scalar @input; # 2096
my $low_mark = gauge(( \@input ) x 100 );
my $high_mark = gauge( map [ shuffle @input ], 0 .. 99 );
my $supf_mark = gauge( map verify( supf( \@input )), 0 .. 99 );
my $mrcs_mark = gauge( map verify( mrcs( \@input )), 0 .. 99 );
printf "Looks like \"supf\" provides %.0f%% of possible entropy\n",
100 * ( $supf_mark - $low_mark ) / ( $high_mark - $low_mark );
printf "Looks like \"mrcs\" provides %.0f%% of possible entropy\n",
100 * ( $mrcs_mark - $low_mark ) / ( $high_mark - $low_mark );
sub gauge { length compress join '', map @$_, @_ }
sub verify {
my $r = shift;
my $s = join '', @$r;
die if $s =~ /(ITEM)\1/;
return $r
}
sub fake_data {
my ( $uniq, $pivot ) = @_;
my @tmp = map { sprintf '< %09d >', rand 1e9 } 0 ... $uniq;
my @out;
push @out, @tmp[ 0 .. $_ ] for 0 .. $pivot;
@out = shuffle( @out, @tmp[ $pivot + 1 .. $uniq ]);
return @out
}
sub supf { # shuffle/unshift/push/first
my $input_ref = shift;
my @in = shuffle @$input_ref;
my @out = shift @in;
LOOP:
while( @in )
{
for my $in ( 0 .. $#in )
{
if( $in[$in] ne $out[0] ) # put at start
{
unshift @out, splice @in, $in, 1;
next LOOP;
}
elsif( $in[$in] ne $out[-1] ) # put at end
{
push @out, splice @in, $in, 1;
next LOOP;
}
else # put in first middle place it fits
{
if( my $pick = first {
$out[$_ - 1] ne $in[$in] and $out[$_] ne $in[$in] } 1 .. $
+#out )
{
splice @out, $pick, 0, splice @in, $in, 1;
next LOOP;
}
}
}
die "FAILED\nin\n @in\nout\n @out";
}
return \@out;
}
sub mrcs { # matrix rows/columns shuffle
my $input_ref = shift;
my %counts; $counts{ $_ } ++ for @$input_ref;
my $nrows = max values %counts;
my $ncols = ceil @$input_ref / $nrows;
my @frequent_keys = grep { $counts{ $_ } == $nrows } keys %counts;
delete @counts{ @frequent_keys };
my @arranged = (( map {( $_ ) x $nrows } @frequent_keys ),
( map {( $_ ) x $counts{ $_ }} keys %counts ));
$#arranged = $nrows * $ncols - 1;
my @matrix = map [ splice @arranged, 0, $nrows ], 0 .. $ncols - 1;
my @row_perm = shuffle 1 .. $ncols - 1; # exclude 0th column
my @col_perm = shuffle 0 .. $nrows - 1;
for my $col ( @matrix ) {
splice @$col, 0, $nrows, @$col[ @col_perm ];
}
splice @matrix, 1, $ncols - 1, @matrix[ @row_perm ];
my @ret = grep defined, map { # transpose & flatten
my $row_i = $_;
map { $matrix[ $_ ][ $row_i ]} 0 .. $ncols - 1
} 0 .. $nrows - 1;
return \@ret;
}