Perl Monk, Perl Meditation  
PerlMonks 
Re^5: Compressing and Encrypting files on Windowsby tachyon (Chancellor) 
on Nov 03, 2004 at 06:12 UTC ( [id://404824] : note . print w/replies, xml )  Need Help?? 
Given that the OTP is randomly generated, is it not possible to imagine that it might produce a cyphertext which did contain redundant data repeats and could therefore be highly compressable? No, no and no. You are just plain wrong. Random data by definition contains no repeats. If it does it is not random. OTPs depend on that randomness. As you seem resistant to my suggestion to do some research..... What is a OneTime Pad?A onetime pad is a very simple yet completely unbreakable symmetric cipher. "Symmetric" means it uses the same key for encryption as for decryption. As with all symmetric ciphers, the sender must transmit the key to the recipient via some secure and tamperproof channel, otherwise the recipient won't be able to decrypt the ciphertext.The key for a onetime pad cipher is a string of random bits, usually generated by a cryptographically strong pseudorandom number generator (CSPRNG). It is better to generate the key using the natural randomness of quantum mechanical events (such as those detected by a Geiger counter), since quantum events are believed by many to be the only source of truly random information in the universe. Onetime pads that use CSPRNGs are open to attacks which attempt to compute part or all of the key. With a onetime pad, there are as many bits in the key as in the plaintext. This is the primary drawback of a onetime pad, but it is also the source of its perfect security (see below). It is essential that no portion of the key ever be reused for another encryption (hence the name "onetime pad"), otherwise cryptanalysis can break the cipher. The cipher itself is exceedlingly simple. To encrypt plaintext, P, with a key, K, producing ciphertext, C, simply compute the bitwise exclusiveor of the key and the plaintext: C = K^PTo decrypt ciphertext, C, the recipient computes P = K^CIt's that simple, and it's perfectly secure, as long as the key is random and is not compromised.
Why Are OneTime Pads Perfectly Secure?If the key is truly random, an xorbased onetime pad is perfectly secure against ciphertextonly cryptanalysis. This means an attacker can't compute the plaintext from the ciphertext without knowlege of the key, even via a brute force search of the space of all keys! Trying all possible keys doesn't help you at all, because all possible plaintexts are equally likely decryptions of the ciphertext.This result is true regardless of how few bits the key has or how much you know about the structure of the plaintext. To see this, suppose you intercept a very small, 8bit, ciphertext. You know it is either the ASCII character 'S' or the ASCII character 'A' encrypted with a onetime pad. You also know that if it's 'S', the enemy will attack by sea, and if it's 'A', the enemy will attack by air. That's a lot to know. All you are missing is the key, a silly little 8bit onetime pad. You assign your crack staff of cryptanalysts to try all 256 8bit onetime pads. This is a brute force search of the keyspace. The results of the brute force search of the keyspace is that your staff finds one 8bit key that decrypts the ciphertext to 'S' and one that decrypts it to 'A'. And you still don't know which one is the actual plaintext. This argument is easilly generalized to keys (and plaintexts) of arbitrary length.
Text taken from here
In Section
Seekers of Perl Wisdom
