http://qs1969.pair.com?node_id=453251


in reply to Hypergeometric test

Are you looking for the Fisher's Exact Test perchance? If so, below is a home-grown implementation for the 2x2 one-tailed case. Requires Math::Pari, but you can eliminate this dependency by writing your own factorial function, and changing $max_arr to something like 170 (or whatever your architecture can handle without overflow).

The code is not very well documented. Sorry. You will have to read some source code to understand what it's doing. Feedback/comments welcome.

Update 3: This code is OBSOLETE. See the new improved version here.

use strict; use warnings; package Fishers_Exact; require Exporter; { no warnings 'once'; *import = \&Exporter::import; } our @EXPORT_OK; our %EXPORT_TAGS = ( all => \@EXPORT_OK ); our $VERSION = 0.03; my %CFG; BEGIN { %CFG = ( VERBOSE => 0, PRECISION => 0, ); } BEGIN { push @EXPORT_OK, 'fishers_exact_2' } sub fishers_exact_2 { my ($a, $r1, $c1, $n, $precision) = @_; my ($b, $c, $d) = ($r1 - $a, $c1 - $a, $n - $r1 - $c1 + $a); fishers_exact($a, $b, $c, $d, $precision); } BEGIN { push @EXPORT_OK, 'fishers_exact' } sub fishers_exact { my ($a, $b, $c, $d, $precision) = @_; $precision = precision() unless defined $precision; my $epsilon = $precision * log 10; # $precision is the maximum adjustment to the log10 of the p-value # that we will bother to make; if the sum of the remaining terms in # the summation will result in a smaller adjustment, we neglect # them. In other words, if $p_i is the i-th partial sum for # computing the p-value (which is performed by the loop below), and # if $p is the value of the entire sum, then after computing $p_i we # will check whether # # log10( $p ) - log10( $p_i ) < $precision # # or equivalently, # # $p - $p_i < $p_i*( 10**$precision - 1 ) # # To ensure this, we can use the criterion # # $p - $p_i < $p_i*log( 10 )*$precision < $p_i*( 10**$precision - 1 +) # # ...which, for a small positive $precision, is only slightly more # stringent than the original criterion. (The second inequality # above follows from Taylor's theorem applied to 10**$precision, for # $precision > 0.) Hence we precompute $epsilon as log( 10 ) times # the $precision. my ($r1, $c1, $N) = ($a + $b, $a + $c, $a + $b + $c + $d); my $test = $a*$N - $r1*$c1; if ($test < 0) { if ($d < $a) { ($a, $b, $c, $d) = ($d, $c, $b, $a); } } else { if ($b < $c) { ($a, $b, $c, $d) = ($b, $a, $d, $c); } else { ($a, $b, $c, $d) = ($c, $d, $a, $b); } } # NOTE: $r1 and $c1 can't be computed any sooner because of # the normalization step above. ($r1, $c1) = ($a + $b, $a + $c); my $numerator = ln_fact( $r1 ) + ln_fact( $c + $d ) + ln_fact( $c1 ) + ln_fact( $b + $d ) - ln_fact( $N ); my $p_val = 0; # Don't use 0. !!! The decimal point # will cause Math::Pari to discard # precision. my $first; { my $delta = exp($numerator - (ln_fact( $a ) + ln_fact( $b ) + ln_fact( $c ) + ln_fact( $d ))); $p_val += $delta; $first = $delta unless defined $first; last if $a < 1 or $epsilon and ($delta*$a < $epsilon*$p_val); # The RHS of the second inequality above is explained in the # earlier comment following the definition of $epsilon. The LHS # is an upper bound for the expression $p - $p_i, as defined in # said comment. This is because the *number* of elements *left* # in the sum, including the one corresponding to $a = 0, equals # the *current* value of $a. All these subsequent elements are <= # $delta (since we are summing strictly on one side of the # distribution's maximum; that's the purpose of the earlier # ( $test < 0 ) test); therefore $a * $delta is an upper bound for # the remainder of the sum. Hence, if the tested inequality # holds, then the criterion for stopping is met a fortiori: # # $p - $p_i <= $delta*$a < $epsilon*$p_val --$a; ++$b; ++$c; --$d; redo; } $p_val = 1 - $p_val + $first if $test < 0; return $p_val; } { my $max_arr; my @ln_fact; my $two_pi; my $pi_over_3; my $half; BEGIN { $max_arr = 10000; $#ln_fact = $max_arr - 1; use Math::Pari qw( PARI factorial ); $two_pi = PARI( 2 * atan2 0, -1 ); $pi_over_3 = PARI( atan2( 0, -1 )/3 ); $half = PARI( 0.5 ); } sub ln_fact { my $n = PARI( shift() ); die "Bad args to ln_fact: $n" if $n < 0; if ( $n < $max_arr ) { $ln_fact[ $n ] ||= log factorial( $n ); return $ln_fact[ $n ]; } else { # Gosper's approximation; from # http://mathworld.wolfram.com/StirlingsApproximation.html return $half * log( $two_pi*$n + $pi_over_3 ) + $n * log( $n ) - $n; } } } BEGIN { push @EXPORT_OK, map lc, keys %CFG } sub AUTOLOAD { our $AUTOLOAD; ( my $name = uc $AUTOLOAD ) =~ s/.*:://; if ( defined $CFG{ $name } ) { my $getset = sub { my $ret = $CFG{ $name }; $CFG{ $name } = shift if @_; return $ret; }; { no strict 'refs'; *$AUTOLOAD = $getset; } goto &$AUTOLOAD; } else { die "Unknown function: $AUTOLOAD"; } } BEGIN { for my $k ( keys %CFG ) { my $method = lc $k; push @EXPORT_OK, $method; my $getset = sub { my $ret = $CFG{ $k }; $CFG{ $k } = shift if @_; return $ret; }; { no strict 'refs'; *$method = $getset; } } } BEGIN { use Carp; $SIG{ __DIE__ } = sub { verbose() ? Carp::confess( @_ ) : die @_ }; }

Update: minor changes to code (got rid of unnecessarily AUTOLOAD'ed methods).

Update2: fixed a Pari-related bug that caused the program to lose precision for certain inputs.

Needless to say, I am providing this code "as is", without any expressed or implied warranties whatsoever. Use at your own risk.

the lowliest monk