# date notkept hosts 1399003199 50 10 1399089599 63 11 1399175999 120 12 1399262399 55 20 1399348799 60 22 1399435199 63 25 1399521599 52 24 #### !/usr/bin/gnuplot set xlabel "Date" set ylabel "Count" set autoscale p(x) = m1*x + b1 fit p(x) 'test.dat' using 1:2 via m1, b1 plot 'test.dat' using 1:2, p(x) #### Final set of parameters Asymptotic Standard Error ======================= ========================== m1 = 4.65548e-08 +/- 5.823e-05 (1.251e+05%) b1 = 1 +/- 8.148e+04 (8.148e+06%) #### #!/usr/bin/gnuplot set xlabel "Date" set ylabel "Count" set autoscale p(x) = m1*x + b1 m1 = -1e-5 b1 = 30000 fit p(x) 'test.dat' using 1:2 via m1, b1 plot 'test.dat' using 1:2, p(x) #### Final set of parameters Asymptotic Standard Error ======================= ========================== m1 = -2.13926e-05 +/- 5.736e-05 (268.1%) b1 = 30000 +/- 8.027e+04 (267.6%) #### #!/usr/bin/gnuplot set xlabel "Date" set ylabel "Count" set autoscale p(x) = m1 * (x / 1399003199) + b1 fit p(x) 'test.dat' using 1:2 via m1, b1 plot 'test.dat' using 1:2, p(x) #### Final set of parameters Asymptotic Standard Error ======================= ========================== m1 = -31227.8 +/- 8.025e+04 (257%) b1 = 31299.7 +/- 8.026e+04 (256.4%) #### > x [1] 1399003199 1399089599 1399175999 1399262399 1399348799 [6] 1399435199 1399521599 > y [1] 50 63 120 55 60 63 52 > lm(y ~ x) Call: lm(formula = y ~ x) Coefficients: (Intercept) x 3.130e+04 -2.232e-05 > m <- lm(y ~ x) > summary(m) Call: lm(formula = y ~ x) Residuals: 1 2 3 4 5 6 7 -21.9286 -7.0000 51.9286 -11.1429 -4.2143 0.7143 -8.3571 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.130e+04 8.026e+04 0.390 0.713 x -2.232e-05 5.736e-05 -0.389 0.713 Residual standard error: 26.22 on 5 degrees of freedom Multiple R-squared: 0.0294, Adjusted R-squared: -0.1647 F-statistic: 0.1514 on 1 and 5 DF, p-value: 0.7132