# An approach to coding the proof for Distribution rule # for Summation and Union over the Natural Realm # re MF:C:155 my($nu,$lhs,$rhs); ($kappa,$mu,$nu) = (3,4,5); if( $kappa < $mu and $mu < $nu ){ print "Evaluating relation when \$kappa:$kappa < \$mu:$mu < \$nu:$nu\n"; $lhs = $kappa + ( $mu < $nu ? $nu : $mu ); $rhs = ( $kappa + $mu ) < ( $kappa + $nu ) ? $kappa + $nu : $kappa + $mu ; print "\$lhs:$lhs = \$kappa:$kappa + \$nu:$nu\n"; print "\$rhs:$rhs = \$kappa:$kappa + \$nu:$nu\n"; print "Evaluation of relation ", $lhs == $rhs ? 'succeeded' : 'failed'; print qq{\n}; } until( $kappa > $mu and $mu > $nu ){ $mu *= $mu unless $mu > $nu; $kappa *= $kappa unless $kappa > $mu; # print "\$kappa:$kappa \$mu:$mu \$nu:$nu\n"; } #print "\$kappa:$kappa > \$mu:$mu > \$nu:$mu" #now we have interchanged the values not the operators if( $nu < $mu and $mu < $kappa ){ print "Evaluating relation when \$nu:$nu < \$mu:$mu < \$kappa:$kappa\n"; $lhs = $nu + ( $mu > $kappa ? $mu : $kappa ); # $rhs = ( $nu > $mu ? $nu : $mu ) + ( $nu < $kappa ? $nu : $kappa ); $rhs = ( $nu + $mu ) > ( $nu + $kappa ) ? $nu + $mu : $nu + $kappa ; print "\$lhs:$lhs = \$kappa:$kappa + \$mu:$mu\n"; print "\$rhs:$rhs = \$kappa:$kappa + \$mu:$mu\n"; print "Evaluation of relation ", $lhs == $rhs ? 'succeeded' : 'failed'; print qq{\n}; } __END__ Evaluating relation when $kappa:3 < $mu:4 < $nu:5 $lhs:8 = $kappa:3 + $nu:5 $rhs:8 = $kappa:3 + $nu:5 Evaluation of relation succeeded Evaluating relation when $nu:5 < $mu:16 < $kappa:81 $lhs:86 = $kappa:81 + $mu:16 $rhs:86 = $kappa:81 + $mu:16 Evaluation of relation succeeded