An approach to the proof of the Distribution Rule for Summation and Union over the Natural Realm wrt MF(C):155 P.NJW Evaluating relation (P1) when $kappa:3 < $mu:4 < $nu:5 $lhs:8 = $kappa:3 + $nu:5 $rhs:8 = $kappa:3 + $nu:5 Evaluation of relation succeeded Evaluating relation when (P2) $kappa:3 < $nu:5 < $mu:16 $lhs:19 = $kappa:3 + $mu:16 $rhs:19 = $kappa:3 + $mu:16 Evaluation of relation succeeded Evaluating relation (P3) when $mu:16 < $kappa:81 < $nu:625 $lhs:641 = $mu:16 + $nu:625 $rhs:641 = $mu:16 + $nu:625 Evaluation of relation succeeded Evaluating relation (P4) when $mu:16 < $nu:625 < $kappa:6561 $lhs:6577 = $mu:16 + $nu:625 $rhs:6577 = $mu:16 + $nu:625 Evaluation of relation succeeded Evaluating relation (P5) when $nu:625 < $kappa:6561 < $mu:65536 $lhs:66161 = $kappa:6561 + $mu:65536 $rhs:66161 = $kappa:6561 + $mu:65536 Evaluation of relation succeeded Evaluating relation (P6) when $nu:625 < $mu:65536 < $kappa:43046721 $lhs:43047346 = $kappa:43046721 + $mu:65536 $rhs:43047346 = $kappa:43046721 + $mu:65536 Evaluation of relation succeeded