...-> sumover-> sumover #### ...-> clump(2)-> sumover #### sub sms_WxH_PDL_range ( $m, $w, $h ) { my ( $W, $H ) = $m-> dims; $m-> range( ndcoords( $W - $w + 1, $H - $h + 1 ), [ $w, $h ]) -> reorder( 2, 3, 0, 1 ) -> clump( 2 ) -> sumover } sub sms_WxH_PDL_range_b ( $m, $w, $h ) { my ( $W, $H ) = $m-> dims; $m-> range( ndcoords( $W - $w + 1, $H - $h + 1 ), [ $w, $h ]) -> reorder( 2, 3, 0, 1 ) -> sumover -> sumover } __END__ Time (s) vs. N (NxN submatrix, PDL: Double D [300,300] matrix) +-----------------------------------------------------------+ |+ + + + + + | 1.6 |-+ A +-| | | | | 1.4 |-+ +-| | | 1.2 |-+ +-| | A | | | 1 |-+ +-| | | | B | 0.8 |-+ +-| | A | | | 0.6 |-+ B +-| | | 0.4 |-+ A +-| | B | | A | 0.2 |-+ A B +-| | A B B | | A B B D D | 0 |-+ D D D D D D D D D C C +-| |+ + + + + + | +-----------------------------------------------------------+ 0 5 10 15 20 25 sms_WxH_PDL_range A sms_WxH_PDL_range_b B sms_WxH_PDL_lags C sms_WxH_PDL_naive D +----+-------+-------+-------+-------+ | N | A | B | C | D | +----+-------+-------+-------+-------+ | 2 | 0.015 | 0.008 | 0.000 | 0.000 | | 3 | 0.021 | 0.018 | 0.000 | 0.000 | | 4 | 0.044 | 0.021 | 0.000 | 0.000 | | 5 | 0.073 | 0.047 | 0.000 | 0.003 | | 6 | 0.101 | 0.060 | 0.000 | 0.000 | | 8 | 0.193 | 0.104 | 0.000 | 0.005 | | 10 | 0.294 | 0.138 | 0.000 | 0.005 | | 12 | 0.435 | 0.232 | 0.000 | 0.010 | | 16 | 0.711 | 0.344 | 0.000 | 0.015 | | 20 | 1.115 | 0.549 | 0.000 | 0.026 | | 25 | 1.573 | 0.828 | 0.000 | 0.047 | +----+-------+-------+-------+-------+ #### use strict; use warnings; use experimental qw/ say postderef signatures /; use Time::HiRes 'time'; use PDL; use PDL::NiceSlice; use Test::PDL 'eq_pdl'; use constant STEPS => 100; my $x = zeroes( 200, 200 ); # Put in a simple glider. $x(1:3,1:3) .= pdl ( [1,1,1], [0,0,1], [0,1,0] ); my $backup = $x-> copy; printf "Game of Life!\nMatrix: %s, %d generations\n", $x-> info, STEPS; # Tutorial my $t = time; my $ct = 0; for ( 1 .. STEPS ) { my $t_ = time; # Calculate the number of neighbours per cell. my $n = $x->range(ndcoords($x)-1,3,"periodic")->reorder(2,3,0,1); $n = $n->sumover->sumover - $x; $ct += time - $t_; # Calculate the next generation. $x = ((($n == 2) + ($n == 3))* $x) + (($n==3) * !$x); } printf "Tutorial: %0.3f s (core time: %0.3f)\n", time - $t, $ct; # "Lags" my $m = $backup-> copy; $t = time; $ct = 0; for ( 1 .. STEPS ) { my $t_ = time; # Calculate the number of neighbours per cell. my $n = sms_GoL_lags( $m ) - $m; $ct += time - $t_; # Calculate the next generation. $m = ((($n == 2) + ($n == 3))* $m) + (($n == 3) * !$m); } printf "\"lags\": %0.3f s (core time: %0.3f)\n", time - $t, $ct; die unless eq_pdl( $x, $m ); sub _do_dimension_GoL ( $m ) { $m-> slice( -1 )-> glue( 0, $m, $m-> slice( 0 )) -> lags( 0, 1, ( $m-> dims )[0] ) -> sumover -> slice( '', '-1:0' ) -> xchg( 0, 1 ) } sub sms_GoL_lags ( $m ) { _do_dimension_GoL _do_dimension_GoL $m } __END__ Game of Life! Matrix: PDL: Double D [200,200], 100 generations Tutorial: 1.016 s (core time: 0.835) "lags": 0.283 s (core time: 0.108)