use Math::Calculus::NewtonRaphson; use strict; use warnings; my $exp = Math::Calculus::NewtonRaphson->new(); $exp->addVariable('x'); # our variable in the equations $exp->setExpression('x+3*x-x^2'); if( $exp->getError() ){ print "got error, ".$exp->getError()."\n"; exit(1) } my $result = $exp->newtonRaphson('x', 0); print "result: ".$result."\n"; #### library(rSymPy) x <- Var("x") sympy("solve(3+3*x-x*x, x)") #### [1] "[3/2 - 21**(1/2)/2, 3/2 + 21**(1/2)/2]" #### use strict; use warnings; my $i; my @q = map { rand() } (1..1000); # your 1000 'q' coefficients as just random numbers here my @c = map { rand() } (1..1000); # your 1000 'c' coefficients as just random numbers here my ($a1, $a2, $a3); my $sum_equ = ""; for ($i=1; $i<1000; $i++) { $a1 = (1-$c[$i])*(1-2*$q[$i]); $a2 = -2*$q[$i]; $a3 = $c[$i]*(2*$q[$i] -1); # concatenate the equation of this time with the total equation: $sum_equ = $sum_equ . "($a1/($a2 * x + x + $q[$i]) + $a3/(2*q[$i]*x-x+1)) + "; } $sum_equ =~ s/\+\s*$//; # remove last + print "library(rSymPy)\n\ x <- Var('x')\n\ sympy('solve($sum_equ, x)')\n "; #### perl equ.pl | R