unit module ann; use ann::HopfieldSynaps; class HopfieldNeuron is export { has @.inputsynapses; has @.outputsynapses; has $.input; method BUILD($y1 = 1000000.rand) { $.input = $y1; } method fire() { ### with training update weights loop (my $i = 0; $i < @.inputsynapses.length; $i++) { if (@.inputsynapses[$i].weight * @.inputsynapses[$i].outputneuron.input >= 0) { @.inputsynapses[$i].outputneuron.input = 1; } else { @.inputsynapses[$i].outputneuron.input = 0; } } } } #### unit module ann; use ann::HopfieldNeuron; class HopfieldSynaps is export { has $.weight; has $.inputneuron; has $.outputneuron; method BUILD($inputneuron, $outputneuron, $y1 = 1000000.rand) { $.weight = $y1; } }; #### unit module ann; use ann::HopfieldNeuron; use ann::HopfieldSynaps; class HopfieldNN is export { has @.neurons; method BUILD($size) { @.neurons = (); loop (my $n = 0; $n < $size; $n++) { push (@.neurons, HopfieldNeuron.new()); } loop (my $m = 0; $m < $size; $m++) { loop (my $j = 0; $j < $size; $j++) { push(@.neurons[$j].inputsynapses, HopfieldSynaps.new()); @.neurons[$j].inputsynapses[$j].outputneuron = @.neurons[$m]; } } loop (my $i = 0; $i < $size; $i++) { loop (my $j = 0; $j < $size; $j++) { push(@.neurons[$j].outputsynapses, HopfieldSynaps.new()); @.neurons[$j].outputsynapses[$j].outputneuron = @.neurons[$i]; } } } ### repeat this to train the network method start(@inputs) { ### the inputs length is less than the full neuron list ### the first neurons made in the constructor are the inputs ### of the network loop (my $i = 0; $i < @inputs.length; $i++) { @.neurons[$i].input = @inputs[$i]; } loop (my $j = 0; $j < @.neurons.length; $j++) { @.neurons[$j].fire(); } } #### method start2(@inputs) { ### without any traning, first neurons are for the input pattern loop (my $n = 0; $n < @inputs.length; $n++) { @.neurons[$n].input = @inputs[$n]; } loop (my $i = 0; $i < @.neurons.length; $i++) { loop (my $j = 0; $j < @.neurons.length; $j++) { loop (my $k = 0; $k < @.neurons.length; $k++) { if ($k == $j) { next; }; @.neurons[$i].inputsynapses[$j].weight += (2 * @.neurons[$i].inputsynapses[$j].outputneuron.input - 1) * (2 * @.neurons[$i].inputsynapes[$k].outputneuron.input -1); } } } } };