P = p*A + (1-p)*B Q = q*C + (1-p)*D Find p,q such that P=Q: [ p*ax + (1-p)*bx, p*ay + (1-p)*by ] = [ q*cx + (1-q)*dx, q*cy + (1-q)*dy ] p*ax + (1-p)*bx = q*cx + (1-q)*dx p*ay + (1-p)*by = q*cy + (1-q)*dy p*(ax-bx) + bx = q*(cx-dx) + dx p*(ay-by) + by = q*(cy-dy) + dy ( p*(ax-bx) + bx-dx ) / (cx-dx) = q ( p*(ay-by) + by-dy ) / (cy-dy) = q ( p*(ax-bx) + bx-dx ) / (cx-dx) = ( p*(ay-by) + by-dy ) / (cy-dy) ( p*(ax-bx) + bx-dx ) * (cy-dy) = ( p*(ay-by) + by-dy ) * (cx-dx) p*(ax-bx)*(cy-dy) + (bx-dx)*(cy-dy) = p*(ay-by)*(cx-dx) + (by-dy)*(cx-dx) p*( (ax-bx)*(cy-dy) - (ay-by)*(cx-dx) ) = (by-dy)*(cx-dx) - (bx-dx)*(cy-dy)