use AI::NNFlex::Backprop; use AI::NNFlex::Dataset; my $network = AI::NNFlex::Backprop->new( learningrate=>.00000001, fahlmanconstant=>0, momentum=>0.4, bias=>1); $network->add_layer( nodes=>2, activationfunction=>"linear"); $network->add_layer( nodes=>2, activationfunction=>"linear"); $network->add_layer( nodes=>1, activationfunction=>"linear"); $network->init(); # Taken from Mesh ex_add.pl my $dataset = AI::NNFlex::Dataset->new([ [ 1, 1 ], [ 2 ], [ 500, 500 ], [ 1000 ], [ 1, 2 ], [ 3 ], [ 2, 2 ], [ 4 ], [ 20, 20 ], [ 40 ], [ 50, 50 ], [ 100 ], [ 60, 40 ], [ 100 ], [ 100, 100 ], [ 200 ], [ 150, 150 ], [ 300 ], [ 10, 10 ], [ 20 ], [ 15, 15 ], [ 30 ], [ 12, 8 ], [ 20 ], ]); my $err = 10; # Stop after 4096 epochs -- don't want to wait more than that for ( my $i = 0; ($err > 0.001) && ($i < 40096); $i++ ) { $err = $dataset->learn($network); print "Epoch = $i error = $err\n"; } foreach (@{$dataset->run($network)}) { foreach (@$_){print $_} print "\n"; } # foreach my $a ( 1..10 ) { # foreach my $b ( 1..10 ) { # my($ans) = $a+$b; # my($nnans) = @{$network->run([$a,$b])}; # print "[$a] [$b] ans=$ans but nnans=$nnans\n" unless $ans == $nnans; # } # }