sub Axis { #2 sets of cartesian XYZ co-ordinates on the axis ($Xl1, $Yl1, $Zl1, $Xl2, $Yl2, $Zl2) = @_; $Axx = $Xl1 - $Xl2; $Axy = $Yl1 - $Yl2; $Axz = $Zl1 - $Zl2; $Vform = V($Axx,$Axy,$Axz); $eq = sqrt($Axx**2 + $Axy**2 + $Axz**2); $Unitvector = 1/$eq * $Vform; return($Vform, $Unitvector); } #### sub rotator { (*xcord, *ycord, *zcord, *TotalnumberofCoords, $lineUnitvector, $Xlinecoord, $Ylinecoord, $Zlinecoord) = @_; $angle = 9.4; $translation = 0.4; $coefl1 = 1-cos($angle); $coefl2 = sin($angle); ($LUVx, $LUVy, $LUVz) = &VectorBreakdown($lineUnitvector); for (my $i = 0; $i < @TotalnumberofCoords; $i++) { $Xco[$i] = $xcord[$i] - $Xlinecoord; $Yco[$i] = $ycord[$i] - $Ylinecoord; $Zco[$i] = $zcord[$i] - $Zlinecoord; $Vector[$i] = V($Xco[$i], $Yco[$i], $Zco[$i]); $scal[$i] = $lineUnitvector * $Vector[$i]; $f[$i] = $scal[$i] * ($lineUnitvector - $Vector[$i]); $f[$i] = $coefl1 * $f[$i]; $s[$i] = $lineUnitvector x $Vector[$i]; $s[$i] = $coefl2 * $s[$i]; ($fx[$i], $fy[$i], $fz[$i]) = &VectorBreakdown($f[$i]); ($sx[$i], $sy[$i], $sz[$i]) = &VectorBreakdown($s[$i]); $xo[$i] = $xcord[$i] + $fx[$i] + $sx[$i] + ($transl * $LUVx); $yo[$i] = $ycord[$i] + $fy[$i] + $sy[$i] + ($transl * $LUVy); $zo[$i] = $zcord[$i] + $fz[$i] + $sz[$i] + ($transl * $LUVz); $xo[$i] = sprintf("%.3f", $xo[$i]); $yo[$i] = sprintf("%.3f", $yo[$i]); $zo[$i] = sprintf("%.3f", $zo[$i]); } return(\@xo, \@yo, \@zo); }