in reply to Re^3: Kronecker Product
in thread Kronecker Product

Nice! Interestingly, for this input, the pure Perl solution if faster than my PDL one. But if you make the matrices larger, e.g. already 3x5 and 4x5 makes PDL the fastest, as it scales the best.

map{substr$_->[0],$_->[1]||0,1}[\*||{},3],[[]],[ref qr-1,-,-1],[{}],[sub{}^*ARGV,3]

Replies are listed 'Best First'.
Re^5: Kronecker Product
by LanX (Saint) on Jun 21, 2022 at 14:30 UTC
    Just for fun, a solution with nested maps only ... :)

    use v5.12; use warnings; use Data::Dump qw/pp dd/; my $X = [ [1, -4, 7], [-2, 3, 3] ]; my $Y = [ [8, -9, -6, 5], [1, -3, -4, 7], [2, 8, -8, -3], [1, 2, -5, -1] ]; pp $X; pp $Y; my $X_Y = [ map { my $x = $_; map { my $y = $_; [ map { my $xx = $_; map { $xx * $_ } @$y } @$x ] } @$Y } @$X ]; pp $X_Y;

    [[1, -4, 7], [-2, 3, 3]] [[8, -9, -6, 5], [1, -3, -4, 7], [2, 8, -8, -3], [1, 2, -5, -1]] [ [8, -9, -6, 5, -32, 36, 24, -20, 56, -63, -42, 35], [1, -3, -4, 7, -4, 12, 16, -28, 7, -21, -28, 49], [2, 8, -8, -3, -8, -32, 32, 12, 14, 56, -56, -21], [1, 2, -5, -1, -4, -8, 20, 4, 7, 14, -35, -7], [-16, 18, 12, -10, 24, -27, -18, 15, 24, -27, -18, 15], [-2, 6, 8, -14, 3, -9, -12, 21, 3, -9, -12, 21], [-4, -16, 16, 6, 6, 24, -24, -9, 6, 24, -24, -9], [-2, -4, 10, 2, 3, 6, -15, -3, 3, 6, -15, -3], ]

    Cheers Rolf
    (addicted to the Perl Programming Language :)
    Wikisyntax for the Monastery