Here's a generic solution from Claude, completely untested.
#!/usr/bin/perl
use strict;
use warnings;
use Math::Trig;
# Function to evaluate a point on a cubic Bezier curve at parameter t
sub evaluate_bezier {
my ($p0, $p1, $p2, $p3, $t) = @_;
my $mt = 1 - $t;
my $mt2 = $mt * $mt;
my $mt3 = $mt2 * $mt;
my $t2 = $t * $t;
my $t3 = $t2 * $t;
my $x = $mt3 * $p0->[0] + 3 * $mt2 * $t * $p1->[0] + 3 * $mt * $t2
+ * $p2->[0] + $t3 * $p3->[0];
my $y = $mt3 * $p0->[1] + 3 * $mt2 * $t * $p1->[1] + 3 * $mt * $t2
+ * $p2->[1] + $t3 * $p3->[1];
return [$x, $y];
}
# Function to find circle passing through three points
sub find_circle_from_three_points {
my ($p1, $p2, $p3) = @_;
# Check if points are collinear (or too close to collinear)
my $D = 2 * ($p1->[0] * ($p2->[1] - $p3->[1]) +
$p2->[0] * ($p3->[1] - $p1->[1]) +
$p3->[0] * ($p1->[1] - $p2->[1]));
if (abs($D) < 1e-10) {
# Points are collinear, can't form a unique circle
return (undef, undef);
}
# Calculate squared distances
my $p1_sq = $p1->[0]**2 + $p1->[1]**2;
my $p2_sq = $p2->[0]**2 + $p2->[1]**2;
my $p3_sq = $p3->[0]**2 + $p3->[1]**2;
# Calculate circle center
my $cx = ($p1_sq * ($p2->[1] - $p3->[1]) +
$p2_sq * ($p3->[1] - $p1->[1]) +
$p3_sq * ($p1->[1] - $p2->[1])) / $D;
my $cy = ($p1_sq * ($p3->[0] - $p2->[0]) +
$p2_sq * ($p1->[0] - $p3->[0]) +
$p3_sq * ($p2->[0] - $p1->[0])) / $D;
# Calculate radius
my $center = [$cx, $cy];
my $radius = sqrt(($p1->[0] - $cx)**2 + ($p1->[1] - $cy)**2);
return ($center, $radius);
}
# Function to compute arc angles for the circular arc
sub compute_arc_angles {
my ($center, $start_point, $end_point) = @_;
# Calculate angles from center to points
my $start_angle = atan2($start_point->[1] - $center->[1],
$start_point->[0] - $center->[0]);
my $end_angle = atan2($end_point->[1] - $center->[1],
$end_point->[0] - $center->[0]);
# Ensure proper orientation (counter-clockwise)
if ($start_angle > $end_angle) {
$end_angle += 2 * pi if ($end_angle - $start_angle) < -pi;
} else {
$start_angle += 2 * pi if ($end_angle - $start_angle) > pi;
}
return ($start_angle, $end_angle);
}
# Main function to approximate Bezier curve with circular arcs
sub approximate_bezier_with_arcs {
my ($p0, $p1, $p2, $p3, $num_segments) = @_;
my @arcs = ();
for (my $i = 0; $i < $num_segments; $i++) {
# Sample three points from this segment of the Bezier curve
my $t_start = $i / $num_segments;
my $t_mid = ($i + 0.5) / $num_segments;
my $t_end = ($i + 1) / $num_segments;
my $start_point = evaluate_bezier($p0, $p1, $p2, $p3, $t_start
+);
my $mid_point = evaluate_bezier($p0, $p1, $p2, $p3, $t_mid);
my $end_point = evaluate_bezier($p0, $p1, $p2, $p3, $t_end);
# Find circle passing through these points
my ($center, $radius) = find_circle_from_three_points(
$start_point, $mid_point, $end_point);
# If points are collinear, use a line segment instead
if (!defined $center) {
push @arcs, {
type => 'line',
start => $start_point,
end => $end_point
};
next;
}
# Compute start and end angles for the arc
my ($start_angle, $end_angle) = compute_arc_angles(
$center, $start_point, $end_point);
# Store the arc parameters
push @arcs, {
type => 'arc',
center => $center,
radius => $radius,
start_angle => $start_angle,
end_angle => $end_angle,
start_point => $start_point,
end_point => $end_point
};
}
return \@arcs;
}
# Example usage
my $p0 = [0, 0]; # Start point
my $p1 = [1, 2]; # Control point 1
my $p2 = [3, 3]; # Control point 2
my $p3 = [4, 1]; # End point
my $arcs = approximate_bezier_with_arcs($p0, $p1, $p2, $p3, 3);
# Print arc approximation results
foreach my $arc (@$arcs) {
if ($arc->{type} eq 'arc') {
printf "Arc: center=(%.2f, %.2f), radius=%.2f, angles=%.2f to
+%.2f\n",
$arc->{center}->[0], $arc->{center}->[1], $arc->{radius},
$arc->{start_angle} * 180/pi, $arc->{end_angle} * 180/pi;
} else {
printf "Line: from (%.2f, %.2f) to (%.2f, %.2f)\n",
$arc->{start}->[0], $arc->{start}->[1],
$arc->{end}->[0], $arc->{end}->[1];
}
}
-QM
--
Quantum Mechanics: The dreams stuff is made of
|