in reply to Re^5: [OT] The interesting problem of comparing bit-strings.
in thread [OT] The interesting problem of comparing bit-strings.
But thethinkthing is that, actually, you can! Only that you will have to run eight searches instead of one.
Hm. Pedantically, that still searching for bytes, but no matter, it still doesn't solve the problem. What if what you are looking for spans a byte boundary?
Eg. The needle below appears twice in the haystack, but no combination of 8 (or any number) of repne scasb instructions will ever find either:
needle: 00100100 haystack: + * * * * 1 2 3 4 5 6 +7 8 9 0 1 2 0123456789012345678901234567890123456789012345678901234567890123456789 +0123456789012345678901234567890123456789012345678901234567 1111000101001010110110101100101011101001010100010111100010011001010100 +0111111111001000000011100100100111011100100100111000110111
Because, repne scasb scans the string looking for a fixed byte value, but the needle doesn't appear as a byte anywhere in the string.
Both occurrences span byte boundaries, thus to find them, you need to do two compares, using two different masks on two adjacent bytes, against two different byte values, neither of which are or include the needle.
Nor can you pad the needle (on both ends) to 16-bits and use repne scabw to find it, because again, a masking operation is required to extract the relevant 7 bits from the surrounding 16.
The same is true (and then some) for my use of 64-bit comparisons, but I didn't suggest I was going to microcode loop instructions.
So, I'll say it again, with a minor addition, that (I hope) will satisfy you; and will go right over his head:
You cannot search for bits using byte-wise instructions alone
What he pontificated about was utterly pointless; and wrong.
And that before we get into:
And my compiler doesn't support inline assembler.
We already know how completely screwed his sens eof probabilities are: The odds of an actual collision for a 7-digit random number are so astronomically small that I quite frankly would not bother to check for it.
I mentioned that my haystacks are frequently >1/4GB in size"; that's 33 million quads; the chances that two the same appear somewhere are (by the Birthday Paradox) not so slim in totally random data; but in structured, correlated, meaningful data, quite likely to be much much higher.
And that's before you consider that the patterns I'll be searching for are not quad-aligned, thus every bit in that 1/4GB (bar the first and last 63 bit) is actually a part of 63 (potentially) entirely different quads. Ie. that 33 million just became 2.1 billion.
Beyond that, using bytes is a bad idea for this in any number of ways:
Effectively 64-bits is moved across the data bus, but only 8-bits are used. Even reading from cache, every byte except the low byte of each quad has to be manipulated into the low 8 bits of a register before it can be used.
Most of them use AL or CL leaving the rest of the register useless for the duration.
If it is of interest, this is my currently incomplete code (a few edge cases to handle) locating a 1Mi bit needle near the end of a 1GiB buffer of random bits:
C:\test\C>bvSearch 1745337664 1048576 Found it at 67108800 Took 0.255063793859 secs
|
---|
Replies are listed 'Best First'. | |
---|---|
Re^7: [OT] The interesting problem of comparing bit-strings.
by salva (Canon) on Mar 25, 2015 at 11:59 UTC | |
by BrowserUk (Patriarch) on Mar 25, 2015 at 12:23 UTC | |
| |
Re^7: [OT] The interesting problem of comparing bit-strings.
by salva (Canon) on Mar 25, 2015 at 12:23 UTC | |
by BrowserUk (Patriarch) on Mar 25, 2015 at 12:45 UTC |