$x1="25182368226823482328225816981978219820482178169825182368225825382308231823281698253825082528195";$x2=(129^137);@x2=reverse(split(/$x2/,$x1));for($x=0;$x<(@x2);$x++){print chr((($x2[$x])^(594^731)));}

The Algorythm is based on something I read in 'Learn Delphi in 21 days' by Osier et al.
Hope it offends the eye as much as writing it offended my senibility...
SMiTZ

Replies are listed 'Best First'.
Re: What are the chances of this working?
by tachyon (Chancellor) on Oct 10, 2001 at 06:04 UTC
    $x1="25182368226823482328225816981978219820482178169825182368225825382 +308231823281698253825082528195"; print chr($_^137) for reverse split '8', $x1; $x1 ="1978219820482178169825382308231816982298251823682178169825182308 +1698229825182368249816982508174825381928169825382438243820381698"; print pack 'c', $_^137 for reverse split 1024>>7, $x1; s//2518236822682348232822581698229825182368217816982518236822582538230 +823182328169825382508252819581698/; print map{pack c,(1<<1<<2<<3<<5<<8>>6>>4>>2|9)^uc}grep chr,reverse/(.* +?)\070/g;

    Update

    Yes they are all the same algoritm as the original

    cheers

    tachyon

    s&&rsenoyhcatreve&&&s&n.+t&"$'$`$\"$\&"&ee&&y&srve&&d&&print