in reply to Re^2: compute paths in Pascal's triangle (aka Tartaglia's one)
in thread compute paths in Pascal's triangle (aka Tartaglia's one)
Here's the functional version Re: compute paths in Pascal's triangle (aka Tartaglia's one) modified to allow a top other than 0-0.
#!/usr/bin/perl # http://perlmonks.org/?node_id=1211497 use strict; use warnings; sub up { my ($row, $col) = split /-/, $_[0]; my ($startrow, $startcol) = split /-/, $_[-1]; return $_[0] eq $_[-1] ? "@_[0..@_-2]\n" : ($row - $startrow > 0 && $col - $startcol > 0 && up( ~-$row . '-' . ~-$col, @_ ) ) . ($row - $startrow > $col - $startcol && up( ~-$row . '-' . $col, @_ ) ); } print up( '3-1', '1-0' ); # bottom, top
|
|---|
| Replies are listed 'Best First'. | |
|---|---|
|
Re^4: compute paths in Pascal's triangle (aka Tartaglia's one)
by LanX (Saint) on Mar 25, 2018 at 23:49 UTC |