in reply to This may be more of a math question
Well, it's simply true - we need first to look at the lowest bit of a and b. If they are both zero, then, obviously, a^b == (a^b) + (1^1) == (a+1)^(b+1).This occurs 25% of the time.
The next (interesting) case would be that both lowest bits of a and b are 1, and the second lowest bit of both, a and b, is 0. Then again, a^b == (a+1)^(b+1).
I'm not sure, if this method of counting will arrive at 33% overall, as there are some other possibilities (like a=5, b=6) which I didn't count, but 25% is close enough to 33% to mark this method of generating random numbers as dangerous.
perl -MHTTP::Daemon -MHTTP::Response -MLWP::Simple -e ' ; # The $d = new HTTP::Daemon and fork and getprint $d->url and exit;#spider ($c = $d->accept())->get_request(); $c->send_response( new #in the HTTP::Response(200,$_,$_,qq(Just another Perl hacker\n))); ' # web
|
|---|
| Replies are listed 'Best First'. | |
|---|---|
|
Re: Re: This may be more of a math question
by jima (Vicar) on May 15, 2002 at 21:55 UTC |