The Synopsis section of the Algorithm::NaiveBayes docs seems fairly straight-forward. While I haven't tested the code below, I believe it should work as intended.
use strict; use warnings; use Algorithm::NaiveBayes; use Data::Dumper; $| = 1; $Data::Dumper::Deepcopy = 1; $Data::Dumper::Sortkeys = 1; my %training_files = ( positive => q{./training-positive.txt}, negative => q{./training-negative.txt}, neutral => q{./training-neutral.txt}, ); my @test_files = ( q{./001-test.txt}, q{./002-test.txt}, ); my $nb = Algorithm::NaiveBayes->new( purge => 0, ); foreach my $k ( keys %training_files ) { local $/; open my $inf, q{<}, $training_files{$k} or die $!; my $line = <$inf>; close $inf; $nb->add_instance( attributes => str_to_array( $line ), label => [ $word ], ); } $nb->train; foreach my $tf ( @test_files ) { local $/; open my $inf, q{<}, $tf or die $!; my $line = <$inf>; close $inf; my $result = $nb->predict( attributes => str_to_array( $line ), ); print qq{Prediction: $result - $tf\n}; } sub str_to_array { my ($str) = @_; my %attr; foreach my $word ( split /\s|[\(\)!?.,:;]/, $str ) { $attr{$word}++; } return \%attr; }
Hope that helps.
In reply to Re: how to use Algorithm::NaiveBayes module
by atcroft
in thread how to use Algorithm::NaiveBayes module
by agnes
| For: | Use: | ||
| & | & | ||
| < | < | ||
| > | > | ||
| [ | [ | ||
| ] | ] |