Two possibilities, with your values appearing to have been chosen specifically for the latter log scaling method?:
##! perl -slw use strict; sub genScaler { my( $minout, $maxout, $minin, $maxin ) = @_; my $outRange = $maxout - $minout; my $inRange = $maxin - $minin; my $factor = $inRange / $outRange; sub { my $in = shift; return $minout + ( $in / $factor ); } } sub genLogScaler { my( $minout, $maxout, $minin, $maxin ) = @_; sub { my $in = shift; $in = 1 if $in < 1; return $minout + log( $in ); } } my $fscale = genScaler( 1, 10, 0.1, 8000 ); print "Linear:"; printf "%7.1f -> %.1f\n", $_, $fscale->( $_ ) for 0.1, 1, 10, 100, 800 +, 1000, 4000, 6000, 8000; print "\nLog:"; my $lscale = genLogScaler( 1, 10, 0.1, 8000 ); printf "%7.1f -> %.1f\n", $_, $lscale->( $_ ) for 0.1, 1, 10, 100, 800 +, 1000, 4000, 6000, 8000;
Produces:
C:\test>genScalar.pl Linear: 0.1 -> 1.0 1.0 -> 1.0 10.0 -> 1.0 100.0 -> 1.1 800.0 -> 1.9 1000.0 -> 2.1 4000.0 -> 5.5 6000.0 -> 7.8 8000.0 -> 10.0 Log: 0.1 -> 1.0 1.0 -> 1.0 10.0 -> 3.3 100.0 -> 5.6 800.0 -> 7.7 1000.0 -> 7.9 4000.0 -> 9.3 6000.0 -> 9.7 8000.0 -> 10.0
In reply to Re^2: Data Normalization (homework?)
by BrowserUk
in thread RE: Data Normalization
by lonewolf28
| For: | Use: | ||
| & | & | ||
| < | < | ||
| > | > | ||
| [ | [ | ||
| ] | ] |