But if I can accept the challenge I'd present a commandline version of the 15 puzzle that is a bit longer than your (25 vs 15 lines) but always poses resolvable games.. ;=)
unless ($^W){use strict; use warnings;} use List::Util qw(shuffle first); my @tbl = ([1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]); my $e = [3,3]; for (1..$ARGV[0]||1000) { my $new = (shuffle &ad($e))[0]; $tbl[$e->[0]][$e->[1]] = $tbl[$new->[0]][$new->[1]]; $tbl[$new->[0]]->[$new->[1]] = 16; $e = [$new->[0],$new->[1]]; } while(1){ print +(join ' ',map{$_==16?' ':sprintf '%02s',$_}@{$tbl[$_]}),"\n" + for 0..3; my $m = <STDIN>; chomp $m; die "Enter a number to move!" unless $m; my $tile=first{$tbl[$$_[0]]->[$$_[1]]==$m}map{[$_,0],[$_,1],[$_,2],[ +$_,3]}0..3; my $new=first{$tbl[$$_[0]]->[$$_[1]]==16}&ad(grep{$tbl[$$_[0]]->[$$_ +[1]]==$m} map {[$_,0],[$_,1],[$_,2],[$_,3]}0..3); if ($new){$tbl[$$new[0]][$$new[1]]=$m;$tbl[$$tile[0]][$$tile[1]]=16; +} system ($^O eq 'MSWin32' ? 'cls' : 'clear'); } sub ad{ my $e = shift; grep {$_->[0]<4 && $_->[1]<4 && $_->[0]>-1 && $_- +>[1]>-1} [$$e[0]-1,$$e[1]],[$$e[0]+1,$$e[1]],[$$e[0],$$e[1]-1],[$$e[0],$$ +e[1]+1] }
Never reached such square brackets density..
L*
In reply to Re^2: Tk - Discipulus 15 puzzle -- minimalist challenge
by Discipulus
in thread Tk - Discipulus 15 puzzle
by Discipulus
For: | Use: | ||
& | & | ||
< | < | ||
> | > | ||
[ | [ | ||
] | ] |