This program calculates and displays Voronoi neighborhoods. The neighborhoods wrap so the image (if it were one) is tileable. There are many examples of Voronoi spots found in nature, quite an interesting subject (search Google).
Any suggestions for a better @CHARS to use?
SpotFoo
#!/usr/bin/perl use strict; my @CHARS = split('', ' .,-+*$&#@'); my ($XMIN, $XMAX) = qw(0 1); my ($YMIN, $YMAX) = qw(0 1); my ($ROWS, $COLS) = qw(40 80); my $POINTS = 8; my $REPEAT = 0; my $xfact = ($XMAX - $XMIN) / $COLS; my $yfact = ($YMAX - $YMIN) / $ROWS; my (@screen, @xs, @ys); # Pick some random points for (0..$POINTS-1) { my ($xrand, $yrand) = (rand(), rand()); for my $xoffset (-1..1) { for my $yoffset (-1..1) { push (@xs, $xrand + $xoffset); push (@ys, $yrand + $yoffset); } } } # Calculate screen for my $yi (0..$ROWS-1) { my $y = $YMIN + $yi * $yfact; for my $xi (0..$COLS-1) { my $x = $XMIN + $xi * $xfact; my ($best, $good) = closest($x, $y, \@xs, \@ys); $screen[$xi][$yi] = $CHARS[int(10 * ($best / $good))]; } } # Print screen for (0..$REPEAT) { for my $yi (0..$ROWS-1) { for my $xi (0..$COLS-1) { print "$screen[$xi][$yi]"; } print "\n"; } } #----------------------------------------------------------- sub closest { my ($x, $y, $xs, $ys) = @_; my ($dist, $best, $good); for (my $i = 0; $i < @$xs; $i++) { $dist = sqrt(($x - $xs->[$i])**2 + ($y - $ys->[$i])**2); if ($i == 0 || $dist < $best) { ($good, $best) = ($best, $dis +t); } elsif ($i == 1 || $dist < $good) { $good = $dist; } } return ($best, $good); }
In reply to Perl Spots by YuckFoo
| For: | Use: | ||
| & | & | ||
| < | < | ||
| > | > | ||
| [ | [ | ||
| ] | ] |