A nice explanation of the algorithm; thanks. However, this part isn't quite right.
> # @p is the position of each element in @o, > # that is, @o = (0..$#e)[@p] > my @p= (0..$#e); > # Note that it is also true that @p = (0..$#e)[@o].
In the language of group theory, (0..$#e) is the identity, while @o, @p are inverses of each other. Thus @p[@o]=@o[@p]=(0..$#e). For example,
# an arbitrary permutation @o = @permutation = (1,2,0); # position of 0 is in $o[2], so $p[0]=2. # This leads to @p = @positions = (2,0,1); # And then print " o[p] = (@o[@p]) = p[o] = (@p[@o]) \n";
which outputs
o[p] = (0 1 2) = p[o] = (0 1 2)
Regards,

 barrachois


In reply to Re^2: Steinhaus - Johnson - Trotter Algorithm for Permutations (explain) by barrachois
in thread Steinhaus - Johnson - Trotter Algorithm for Permutations by dragonchild

Title:
Use:  <p> text here (a paragraph) </p>
and:  <code> code here </code>
to format your post, it's "PerlMonks-approved HTML":



  • Posts are HTML formatted. Put <p> </p> tags around your paragraphs. Put <code> </code> tags around your code and data!
  • Titles consisting of a single word are discouraged, and in most cases are disallowed outright.
  • Read Where should I post X? if you're not absolutely sure you're posting in the right place.
  • Please read these before you post! —
  • Posts may use any of the Perl Monks Approved HTML tags:
    a, abbr, b, big, blockquote, br, caption, center, col, colgroup, dd, del, details, div, dl, dt, em, font, h1, h2, h3, h4, h5, h6, hr, i, ins, li, ol, p, pre, readmore, small, span, spoiler, strike, strong, sub, summary, sup, table, tbody, td, tfoot, th, thead, tr, tt, u, ul, wbr
  • You may need to use entities for some characters, as follows. (Exception: Within code tags, you can put the characters literally.)
            For:     Use:
    & &amp;
    < &lt;
    > &gt;
    [ &#91;
    ] &#93;
  • Link using PerlMonks shortcuts! What shortcuts can I use for linking?
  • See Writeup Formatting Tips and other pages linked from there for more info.