a combination doesn't not consider a group of elements different if the only thing that changes is the position while a permutation does
Confusion alert! Confusion alert! That sentence is extremely hard to understand, even though I know what you're trying to say. I think one of the most egregious problems is the double negative, doesn't not. For the sake of others, I'll try to translate:
The ordering of the elements matters for a combination, but doesn't matter for a permutation.
In reply to Re^2: Manipulating Arrays
by Anonymous Monk
in thread Manipulating Arrays
by webchalkboard
| For: | Use: | ||
| & | & | ||
| < | < | ||
| > | > | ||
| [ | [ | ||
| ] | ] |