In code, it looks like this:
OK, so this finds terrible solutions for most numbers, if you'd actually have to do these things with the timers. But they are solutions nonetheless, and you didn't really say anything about optimality of solutions. Anyway, this method has its own intrinsic beauty from the application of number theory.my @TIMERS = qw[ 4 7 ]; my $TARGET = shift || 5; my ($gcd, @c) = bezout(@TIMERS); die "$TARGET is not egg-timer-able!" if $TARGET % $gcd; my $iter = $TARGET / $gcd; my @pos = grep { $c[$_] > 0 } 0 .. $#c; my @neg = grep { $c[$_] < 0 } 0 .. $#c; @c = map abs, @c; printf qq[ Perform steps 1 & 2 in parallel: Step 1: One after the other, start the following timers: %s Step 2: One after the other, start the following timers: %s Step 2 will finish exactly $gcd minutes before step 2, so when it finishes, set aside the remaining $gcd minutes on the last timer. ], join("\n", map " $c[$_] of the $TIMERS[$_]-minute timers", @pos), join("\n", map " $c[$_] of the $TIMERS[$_]-minute timers", @neg); print "\nRepeat the whole thing $iter times to $TARGET minutes set asi +de.\n" if $iter > 1; sub bezout { if ( @_ > 2 ) { my ($g1, @c1) = bezout( @_[0,1] ); my ($g2, @c2) = bezout( $g1, @_[2..$#_] ); return ( $g2, (map { $c2[0]*$_ } @c1), @c2[1 .. $#c2] ); } my ($x, $y) = @_; return ($y,0,1) if $x % $y == 0; my ($g, $s, $t) = bezout( $y, $x % $y ); return ($g, $t, $s - $t * int($x/$y)); }
Update: see Re^3: Challenge: Egg Timer Puzzles for how you can extend this technique and get rid of the infinite # of timers assumption.
blokhead
In reply to Re: Challenge: Egg Timer Puzzles
by blokhead
in thread Challenge: Egg Timer Puzzles
by Limbic~Region
For: | Use: | ||
& | & | ||
< | < | ||
> | > | ||
[ | [ | ||
] | ] |