I hope it's not a problem to put this much code in.

Here is the Digest::SHA::PurePerl module I am using. The only modifications are the two things I mentioned in this thread: adding the exports to get it to actually export the functions, and removing the dump / load functions and use FileHandle include.

Everything I removed is still there, but commented out.

package Digest::SHA::PurePerl; require 5.003000; use strict; use vars qw($VERSION @ISA @EXPORT @EXPORT_OK); use integer; #use FileHandle; # only need for dump and load $VERSION = '5.47'; require Exporter; @ISA = qw(Exporter); @EXPORT_OK = qw( hmac_sha1 hmac_sha1_base64 hmac_sha1_hex hmac_sha224 hmac_sha224_base64 hmac_sha224_hex hmac_sha256 hmac_sha256_base64 hmac_sha256_hex hmac_sha384 hmac_sha384_base64 hmac_sha384_hex hmac_sha512 hmac_sha512_base64 hmac_sha512_hex sha1 sha1_base64 sha1_hex sha224 sha224_base64 sha224_hex sha256 sha256_base64 sha256_hex sha384 sha384_base64 sha384_hex sha512 sha512_base64 sha512_hex); # If possible, inherit from Digest::base (which depends on MIME::Base6 +4) *addfile = \&_Addfile; eval { require MIME::Base64; require Digest::base; push(@ISA, 'Digest::base'); }; if ($@) { *hexdigest = \&_Hexdigest; *b64digest = \&_B64digest; } # ref. src/sha.c and sha/sha64bit.c from Digest::SHA my $MAX32 = 0xffffffff; my $TWO32 = 4294967296; my $uses64bit = (((1 << 16) << 16) << 16) << 15; my @H01 = ( # SHA-1 initial hash value 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ); my @H0224 = ( # SHA-224 initial hash value 0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4 ); my @H0256 = ( # SHA-256 initial hash value 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ); my(@H0384, @H0512); # filled in later if $uses64bit # Routines with a "_c_" prefix return Perl code-fragments which are # eval'ed at initialization. This technique emulates the behavior # of the C preprocessor, allowing the optimized transform code from # Digest::SHA to be more easily translated into Perl. sub _c_SL32 { # code to shift $x left by $n bits my($x, $n) = @_; "($x << $n)"; # even works for 64-bit integers # since the upper 32 bits are # eventually discarded in _digcpy } sub _c_SR32 { # code to shift $x right by $n bits my($x, $n) = @_; my $mask = (1 << (32 - $n)) - 1; "(($x >> $n) & $mask)"; # "use integer" does arithmetic # shift, so clear upper bits } sub _c_Ch { my($x, $y, $z) = @_; "($z ^ ($x & ($y ^ $z)))" } sub _c_Pa { my($x, $y, $z) = @_; "($x ^ $y ^ $z)" } sub _c_Ma { my($x, $y, $z) = @_; "(($x & $y) | ($z & ($x | $y)))" } sub _c_ROTR { # code to rotate $x right by $n bits my($x, $n) = @_; "(" . _c_SR32($x, $n) . " | " . _c_SL32($x, 32 - $n) . ")"; } sub _c_ROTL { # code to rotate $x left by $n bits my($x, $n) = @_; "(" . _c_SL32($x, $n) . " | " . _c_SR32($x, 32 - $n) . ")"; } sub _c_SIGMA0 { # ref. NIST SHA standard my($x) = @_; "(" . _c_ROTR($x, 2) . " ^ " . _c_ROTR($x, 13) . " ^ " . _c_ROTR($x, 22) . ")"; } sub _c_SIGMA1 { my($x) = @_; "(" . _c_ROTR($x, 6) . " ^ " . _c_ROTR($x, 11) . " ^ " . _c_ROTR($x, 25) . ")"; } sub _c_sigma0 { my($x) = @_; "(" . _c_ROTR($x, 7) . " ^ " . _c_ROTR($x, 18) . " ^ " . _c_SR32($x, 3) . ")"; } sub _c_sigma1 { my($x) = @_; "(" . _c_ROTR($x, 17) . " ^ " . _c_ROTR($x, 19) . " ^ " . _c_SR32($x, 10) . ")"; } sub _c_M1Ch { # ref. Digest::SHA sha.c (sha1 routine) my($a, $b, $c, $d, $e, $k, $w) = @_; "$e += " . _c_ROTL($a, 5) . " + " . _c_Ch($b, $c, $d) . " + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n"; } sub _c_M1Pa { my($a, $b, $c, $d, $e, $k, $w) = @_; "$e += " . _c_ROTL($a, 5) . " + " . _c_Pa($b, $c, $d) . " + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n"; } sub _c_M1Ma { my($a, $b, $c, $d, $e, $k, $w) = @_; "$e += " . _c_ROTL($a, 5) . " + " . _c_Ma($b, $c, $d) . " + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n"; } sub _c_M11Ch { my($k, $w) = @_; _c_M1Ch('$a', '$b', '$c', '$d', '$e', +$k, $w) } sub _c_M11Pa { my($k, $w) = @_; _c_M1Pa('$a', '$b', '$c', '$d', '$e', +$k, $w) } sub _c_M11Ma { my($k, $w) = @_; _c_M1Ma('$a', '$b', '$c', '$d', '$e', +$k, $w) } sub _c_M12Ch { my($k, $w) = @_; _c_M1Ch('$e', '$a', '$b', '$c', '$d', +$k, $w) } sub _c_M12Pa { my($k, $w) = @_; _c_M1Pa('$e', '$a', '$b', '$c', '$d', +$k, $w) } sub _c_M12Ma { my($k, $w) = @_; _c_M1Ma('$e', '$a', '$b', '$c', '$d', +$k, $w) } sub _c_M13Ch { my($k, $w) = @_; _c_M1Ch('$d', '$e', '$a', '$b', '$c', +$k, $w) } sub _c_M13Pa { my($k, $w) = @_; _c_M1Pa('$d', '$e', '$a', '$b', '$c', +$k, $w) } sub _c_M13Ma { my($k, $w) = @_; _c_M1Ma('$d', '$e', '$a', '$b', '$c', +$k, $w) } sub _c_M14Ch { my($k, $w) = @_; _c_M1Ch('$c', '$d', '$e', '$a', '$b', +$k, $w) } sub _c_M14Pa { my($k, $w) = @_; _c_M1Pa('$c', '$d', '$e', '$a', '$b', +$k, $w) } sub _c_M14Ma { my($k, $w) = @_; _c_M1Ma('$c', '$d', '$e', '$a', '$b', +$k, $w) } sub _c_M15Ch { my($k, $w) = @_; _c_M1Ch('$b', '$c', '$d', '$e', '$a', +$k, $w) } sub _c_M15Pa { my($k, $w) = @_; _c_M1Pa('$b', '$c', '$d', '$e', '$a', +$k, $w) } sub _c_M15Ma { my($k, $w) = @_; _c_M1Ma('$b', '$c', '$d', '$e', '$a', +$k, $w) } sub _c_W11 { my($s) = @_; '$W[' . (($s + 0) & 0xf) . ']' } sub _c_W12 { my($s) = @_; '$W[' . (($s + 13) & 0xf) . ']' } sub _c_W13 { my($s) = @_; '$W[' . (($s + 8) & 0xf) . ']' } sub _c_W14 { my($s) = @_; '$W[' . (($s + 2) & 0xf) . ']' } sub _c_A1 { my($s) = @_; my $tmp = _c_W11($s) . " ^ " . _c_W12($s) . " ^ " . _c_W13($s) . " ^ " . _c_W14($s); "((\$tmp = $tmp), (" . _c_W11($s) . " = " . _c_ROTL('$tmp', 1) . " +))"; } # The following code emulates the "sha1" routine from Digest::SHA sha. +c my $sha1_code = ' my($K1, $K2, $K3, $K4) = ( # SHA-1 constants 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6 ); sub _sha1 { my($self, $block) = @_; my(@W, $a, $b, $c, $d, $e, $tmp); @W = unpack("N16", $block); ($a, $b, $c, $d, $e) = @{$self->{H}}; ' . _c_M11Ch('$K1', '$W[ 0]' ) . _c_M12Ch('$K1', '$W[ 1]' ) . _c_M13Ch('$K1', '$W[ 2]' ) . _c_M14Ch('$K1', '$W[ 3]' ) . _c_M15Ch('$K1', '$W[ 4]' ) . _c_M11Ch('$K1', '$W[ 5]' ) . _c_M12Ch('$K1', '$W[ 6]' ) . _c_M13Ch('$K1', '$W[ 7]' ) . _c_M14Ch('$K1', '$W[ 8]' ) . _c_M15Ch('$K1', '$W[ 9]' ) . _c_M11Ch('$K1', '$W[10]' ) . _c_M12Ch('$K1', '$W[11]' ) . _c_M13Ch('$K1', '$W[12]' ) . _c_M14Ch('$K1', '$W[13]' ) . _c_M15Ch('$K1', '$W[14]' ) . _c_M11Ch('$K1', '$W[15]' ) . _c_M12Ch('$K1', _c_A1( 0) ) . _c_M13Ch('$K1', _c_A1( 1) ) . _c_M14Ch('$K1', _c_A1( 2) ) . _c_M15Ch('$K1', _c_A1( 3) ) . _c_M11Pa('$K2', _c_A1( 4) ) . _c_M12Pa('$K2', _c_A1( 5) ) . _c_M13Pa('$K2', _c_A1( 6) ) . _c_M14Pa('$K2', _c_A1( 7) ) . _c_M15Pa('$K2', _c_A1( 8) ) . _c_M11Pa('$K2', _c_A1( 9) ) . _c_M12Pa('$K2', _c_A1(10) ) . _c_M13Pa('$K2', _c_A1(11) ) . _c_M14Pa('$K2', _c_A1(12) ) . _c_M15Pa('$K2', _c_A1(13) ) . _c_M11Pa('$K2', _c_A1(14) ) . _c_M12Pa('$K2', _c_A1(15) ) . _c_M13Pa('$K2', _c_A1( 0) ) . _c_M14Pa('$K2', _c_A1( 1) ) . _c_M15Pa('$K2', _c_A1( 2) ) . _c_M11Pa('$K2', _c_A1( 3) ) . _c_M12Pa('$K2', _c_A1( 4) ) . _c_M13Pa('$K2', _c_A1( 5) ) . _c_M14Pa('$K2', _c_A1( 6) ) . _c_M15Pa('$K2', _c_A1( 7) ) . _c_M11Ma('$K3', _c_A1( 8) ) . _c_M12Ma('$K3', _c_A1( 9) ) . _c_M13Ma('$K3', _c_A1(10) ) . _c_M14Ma('$K3', _c_A1(11) ) . _c_M15Ma('$K3', _c_A1(12) ) . _c_M11Ma('$K3', _c_A1(13) ) . _c_M12Ma('$K3', _c_A1(14) ) . _c_M13Ma('$K3', _c_A1(15) ) . _c_M14Ma('$K3', _c_A1( 0) ) . _c_M15Ma('$K3', _c_A1( 1) ) . _c_M11Ma('$K3', _c_A1( 2) ) . _c_M12Ma('$K3', _c_A1( 3) ) . _c_M13Ma('$K3', _c_A1( 4) ) . _c_M14Ma('$K3', _c_A1( 5) ) . _c_M15Ma('$K3', _c_A1( 6) ) . _c_M11Ma('$K3', _c_A1( 7) ) . _c_M12Ma('$K3', _c_A1( 8) ) . _c_M13Ma('$K3', _c_A1( 9) ) . _c_M14Ma('$K3', _c_A1(10) ) . _c_M15Ma('$K3', _c_A1(11) ) . _c_M11Pa('$K4', _c_A1(12) ) . _c_M12Pa('$K4', _c_A1(13) ) . _c_M13Pa('$K4', _c_A1(14) ) . _c_M14Pa('$K4', _c_A1(15) ) . _c_M15Pa('$K4', _c_A1( 0) ) . _c_M11Pa('$K4', _c_A1( 1) ) . _c_M12Pa('$K4', _c_A1( 2) ) . _c_M13Pa('$K4', _c_A1( 3) ) . _c_M14Pa('$K4', _c_A1( 4) ) . _c_M15Pa('$K4', _c_A1( 5) ) . _c_M11Pa('$K4', _c_A1( 6) ) . _c_M12Pa('$K4', _c_A1( 7) ) . _c_M13Pa('$K4', _c_A1( 8) ) . _c_M14Pa('$K4', _c_A1( 9) ) . _c_M15Pa('$K4', _c_A1(10) ) . _c_M11Pa('$K4', _c_A1(11) ) . _c_M12Pa('$K4', _c_A1(12) ) . _c_M13Pa('$K4', _c_A1(13) ) . _c_M14Pa('$K4', _c_A1(14) ) . _c_M15Pa('$K4', _c_A1(15) ) . ' $self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += +$c; $self->{H}->[3] += $d; $self->{H}->[4] += $e; } '; eval($sha1_code); sub _c_M2 { # ref. Digest::SHA sha.c (sha256 routine) my($a, $b, $c, $d, $e, $f, $g, $h, $w) = @_; "\$T1 = $h + " . _c_SIGMA1($e) . " + " . _c_Ch($e, $f, $g) . " + \$K256[\$i++] + $w; $h = \$T1 + " . _c_SIGMA0($a) . " + " . _c_Ma($a, $b, $c) . "; $d += \$T1;\n"; } sub _c_M21 { _c_M2('$a', '$b', '$c', '$d', '$e', '$f', '$g', '$h', $_[ +0]) } sub _c_M22 { _c_M2('$h', '$a', '$b', '$c', '$d', '$e', '$f', '$g', $_[ +0]) } sub _c_M23 { _c_M2('$g', '$h', '$a', '$b', '$c', '$d', '$e', '$f', $_[ +0]) } sub _c_M24 { _c_M2('$f', '$g', '$h', '$a', '$b', '$c', '$d', '$e', $_[ +0]) } sub _c_M25 { _c_M2('$e', '$f', '$g', '$h', '$a', '$b', '$c', '$d', $_[ +0]) } sub _c_M26 { _c_M2('$d', '$e', '$f', '$g', '$h', '$a', '$b', '$c', $_[ +0]) } sub _c_M27 { _c_M2('$c', '$d', '$e', '$f', '$g', '$h', '$a', '$b', $_[ +0]) } sub _c_M28 { _c_M2('$b', '$c', '$d', '$e', '$f', '$g', '$h', '$a', $_[ +0]) } sub _c_W21 { my($s) = @_; '$W[' . (($s + 0) & 0xf) . ']' } sub _c_W22 { my($s) = @_; '$W[' . (($s + 14) & 0xf) . ']' } sub _c_W23 { my($s) = @_; '$W[' . (($s + 9) & 0xf) . ']' } sub _c_W24 { my($s) = @_; '$W[' . (($s + 1) & 0xf) . ']' } sub _c_A2 { my($s) = @_; "(" . _c_W21($s) . " += " . _c_sigma1(_c_W22($s)) . " + " . _c_W23($s) . " + " . _c_sigma0(_c_W24($s)) . ")"; } # The following code emulates the "sha256" routine from Digest::SHA sh +a.c my $sha256_code = ' my @K256 = ( # SHA-224/256 constants 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ); sub _sha256 { my($self, $block) = @_; my(@W, $a, $b, $c, $d, $e, $f, $g, $h, $i, $T1); @W = unpack("N16", $block); ($a, $b, $c, $d, $e, $f, $g, $h) = @{$self->{H}}; ' . _c_M21('$W[ 0]' ) . _c_M22('$W[ 1]' ) . _c_M23('$W[ 2]' ) . _c_M24('$W[ 3]' ) . _c_M25('$W[ 4]' ) . _c_M26('$W[ 5]' ) . _c_M27('$W[ 6]' ) . _c_M28('$W[ 7]' ) . _c_M21('$W[ 8]' ) . _c_M22('$W[ 9]' ) . _c_M23('$W[10]' ) . _c_M24('$W[11]' ) . _c_M25('$W[12]' ) . _c_M26('$W[13]' ) . _c_M27('$W[14]' ) . _c_M28('$W[15]' ) . _c_M21(_c_A2( 0)) . _c_M22(_c_A2( 1)) . _c_M23(_c_A2( 2)) . _c_M24(_c_A2( 3)) . _c_M25(_c_A2( 4)) . _c_M26(_c_A2( 5)) . _c_M27(_c_A2( 6)) . _c_M28(_c_A2( 7)) . _c_M21(_c_A2( 8)) . _c_M22(_c_A2( 9)) . _c_M23(_c_A2(10)) . _c_M24(_c_A2(11)) . _c_M25(_c_A2(12)) . _c_M26(_c_A2(13)) . _c_M27(_c_A2(14)) . _c_M28(_c_A2(15)) . _c_M21(_c_A2( 0)) . _c_M22(_c_A2( 1)) . _c_M23(_c_A2( 2)) . _c_M24(_c_A2( 3)) . _c_M25(_c_A2( 4)) . _c_M26(_c_A2( 5)) . _c_M27(_c_A2( 6)) . _c_M28(_c_A2( 7)) . _c_M21(_c_A2( 8)) . _c_M22(_c_A2( 9)) . _c_M23(_c_A2(10)) . _c_M24(_c_A2(11)) . _c_M25(_c_A2(12)) . _c_M26(_c_A2(13)) . _c_M27(_c_A2(14)) . _c_M28(_c_A2(15)) . _c_M21(_c_A2( 0)) . _c_M22(_c_A2( 1)) . _c_M23(_c_A2( 2)) . _c_M24(_c_A2( 3)) . _c_M25(_c_A2( 4)) . _c_M26(_c_A2( 5)) . _c_M27(_c_A2( 6)) . _c_M28(_c_A2( 7)) . _c_M21(_c_A2( 8)) . _c_M22(_c_A2( 9)) . _c_M23(_c_A2(10)) . _c_M24(_c_A2(11)) . _c_M25(_c_A2(12)) . _c_M26(_c_A2(13)) . _c_M27(_c_A2(14)) . _c_M28(_c_A2(15)) . ' $self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += +$c; $self->{H}->[3] += $d; $self->{H}->[4] += $e; $self->{H}->[5] += $ +f; $self->{H}->[6] += $g; $self->{H}->[7] += $h; } '; eval($sha256_code); sub _sha512_placeholder { return } my $sha512 = \&_sha512_placeholder; my $_64bit_code = ' my $w_flag; BEGIN { $w_flag = $^W; # suppress compiler warnings about $^W = 0; # non-portable 64-bit constants } my @K512 = ( 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec, 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817); @H0384 = ( 0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939, 0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4); @H0512 = ( 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179); BEGIN { $^W = $w_flag } # restore prior warning state sub _c_SL64 { my($x, $n) = @_; "($x << $n)" } sub _c_SR64 { my($x, $n) = @_; my $mask = (1 << (64 - $n)) - 1; "(($x >> $n) & $mask)"; } sub _c_ROTRQ { my($x, $n) = @_; "(" . _c_SR64($x, $n) . " | " . _c_SL64($x, 64 - $n) . ")"; } sub _c_SIGMAQ0 { my($x) = @_; "(" . _c_ROTRQ($x, 28) . " ^ " . _c_ROTRQ($x, 34) . " ^ " . _c_ROTRQ($x, 39) . ")"; } sub _c_SIGMAQ1 { my($x) = @_; "(" . _c_ROTRQ($x, 14) . " ^ " . _c_ROTRQ($x, 18) . " ^ " . _c_ROTRQ($x, 41) . ")"; } sub _c_sigmaQ0 { my($x) = @_; "(" . _c_ROTRQ($x, 1) . " ^ " . _c_ROTRQ($x, 8) . " ^ " . _c_SR64($x, 7) . ")"; } sub _c_sigmaQ1 { my($x) = @_; "(" . _c_ROTRQ($x, 19) . " ^ " . _c_ROTRQ($x, 61) . " ^ " . _c_SR64($x, 6) . ")"; } my $sha512_code = q/ sub _sha512 { my($self, $block) = @_; my(@N, @W, $a, $b, $c, $d, $e, $f, $g, $h, $T1, $T2); @N = unpack("N32", $block); ($a, $b, $c, $d, $e, $f, $g, $h) = @{$self->{H}}; for ( 0 .. 15) { $W[$_] = (($N[2*$_] << 16) << 16) | $N[2*$_+1] } for (16 .. 79) { $W[$_] = / . _c_sigmaQ1(q/$W[$_- 2]/) . q/ + $W[$_- 7] + / . _c_sigmaQ0(q/$W[$_-15]/) . q/ + $W[$_-16] } for ( 0 .. 79) { $T1 = $h + / . _c_SIGMAQ1(q/$e/) . q/ + (($g) ^ (($e) & (($f) ^ ($g)))) + $K512[$_] + $W[$_]; $T2 = / . _c_SIGMAQ0(q/$a/) . q/ + ((($a) & ($b)) | (($c) & (($a) | ($b)))); $h = $g; $g = $f; $f = $e; $e = $d + $T1; $d = $c; $c = $b; $b = $a; $a = $T1 + $T2; } $self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += $ +c; $self->{H}->[3] += $d; $self->{H}->[4] += $e; $self->{H}->[5] += $ +f; $self->{H}->[6] += $g; $self->{H}->[7] += $h; } /; eval($sha512_code); $sha512 = \&_sha512; '; eval($_64bit_code) if $uses64bit; sub _SETBIT { my($self, $pos) = @_; my @c = unpack("C*", $self->{block}); $c[$pos >> 3] = 0x00 unless defined $c[$pos >> 3]; $c[$pos >> 3] |= (0x01 << (7 - $pos % 8)); $self->{block} = pack("C*", @c); } sub _CLRBIT { my($self, $pos) = @_; my @c = unpack("C*", $self->{block}); $c[$pos >> 3] = 0x00 unless defined $c[$pos >> 3]; $c[$pos >> 3] &= ~(0x01 << (7 - $pos % 8)); $self->{block} = pack("C*", @c); } sub _BYTECNT { my($bitcnt) = @_; $bitcnt > 0 ? 1 + (($bitcnt - 1) >> 3) : 0; } sub _digcpy { my($self) = @_; my @dig; for (@{$self->{H}}) { push(@dig, (($_>>16)>>16) & $MAX32) if $self->{alg} >= 384; push(@dig, $_ & $MAX32); } $self->{digest} = pack("N" . ($self->{digestlen}>>2), @dig); } sub _sharewind { my($self) = @_; my $alg = $self->{alg}; $self->{block} = ""; $self->{blockcnt} = 0; $self->{blocksize} = $alg <= 256 ? 512 : 1024; for (qw(lenll lenlh lenhl lenhh)) { $self->{$_} = 0 } $self->{digestlen} = $alg == 1 ? 20 : $alg/8; if ($alg == 1) { $self->{sha} = \&_sha1; $self->{H} = [@H01 +] } elsif ($alg == 224) { $self->{sha} = \&_sha256; $self->{H} = [@H02 +24] } elsif ($alg == 256) { $self->{sha} = \&_sha256; $self->{H} = [@H02 +56] } elsif ($alg == 384) { $self->{sha} = $sha512; $self->{H} = [@H03 +84] } elsif ($alg == 512) { $self->{sha} = $sha512; $self->{H} = [@H05 +12] } push(@{$self->{H}}, 0) while scalar(@{$self->{H}}) < 8; $self; } sub _shaopen { my($alg) = @_; my($self); return unless grep { $alg == $_ } (1, 224, 256, 384, 512); return if ($alg >= 384 && !$uses64bit); $self->{alg} = $alg; _sharewind($self); } sub _shadirect { my($bitstr, $bitcnt, $self) = @_; my $savecnt = $bitcnt; my $offset = 0; my $blockbytes = $self->{blocksize} >> 3; while ($bitcnt >= $self->{blocksize}) { &{$self->{sha}}($self, substr($bitstr, $offset, $blockbytes)); $offset += $blockbytes; $bitcnt -= $self->{blocksize}; } if ($bitcnt > 0) { $self->{block} = substr($bitstr, $offset, _BYTECNT($bitcnt)); $self->{blockcnt} = $bitcnt; } $savecnt; } sub _shabytes { my($bitstr, $bitcnt, $self) = @_; my($numbits); my $savecnt = $bitcnt; if ($self->{blockcnt} + $bitcnt >= $self->{blocksize}) { $numbits = $self->{blocksize} - $self->{blockcnt}; $self->{block} .= substr($bitstr, 0, $numbits >> 3); $bitcnt -= $numbits; $bitstr = substr($bitstr, $numbits >> 3, _BYTECNT($bitcnt)); &{$self->{sha}}($self, $self->{block}); $self->{block} = ""; $self->{blockcnt} = 0; _shadirect($bitstr, $bitcnt, $self); } else { $self->{block} .= substr($bitstr, 0, _BYTECNT($bitcnt)); $self->{blockcnt} += $bitcnt; } $savecnt; } sub _shabits { my($bitstr, $bitcnt, $self) = @_; my($i, @buf); my $numbytes = _BYTECNT($bitcnt); my $savecnt = $bitcnt; my $gap = 8 - $self->{blockcnt} % 8; my @c = unpack("C*", $self->{block}); my @b = unpack("C" . $numbytes, $bitstr); $c[$self->{blockcnt}>>3] &= (~0 << $gap); $c[$self->{blockcnt}>>3] |= $b[0] >> (8 - $gap); $self->{block} = pack("C*", @c); $self->{blockcnt} += ($bitcnt < $gap) ? $bitcnt : $gap; return($savecnt) if $bitcnt < $gap; if ($self->{blockcnt} == $self->{blocksize}) { &{$self->{sha}}($self, $self->{block}); $self->{block} = ""; $self->{blockcnt} = 0; } return($savecnt) if ($bitcnt -= $gap) == 0; for ($i = 0; $i < $numbytes - 1; $i++) { $buf[$i] = (($b[$i] << $gap) & 0xff) | ($b[$i+1] >> (8 - $gap) +); } $buf[$numbytes-1] = ($b[$numbytes-1] << $gap) & 0xff; _shabytes(pack("C*", @buf), $bitcnt, $self); $savecnt; } sub _shawrite { my($bitstr, $bitcnt, $self) = @_; return(0) unless $bitcnt > 0; no integer; if (($self->{lenll} += $bitcnt) >= $TWO32) { $self->{lenll} -= $TWO32; if (++$self->{lenlh} >= $TWO32) { $self->{lenlh} -= $TWO32; if (++$self->{lenhl} >= $TWO32) { $self->{lenhl} -= $TWO32; if (++$self->{lenhh} >= $TWO32) { $self->{lenhh} -= $TWO32; } } } } use integer; my $blockcnt = $self->{blockcnt}; return(_shadirect($bitstr, $bitcnt, $self)) if $blockcnt == 0; return(_shabytes ($bitstr, $bitcnt, $self)) if $blockcnt % 8 == 0; return(_shabits ($bitstr, $bitcnt, $self)); } sub _shafinish { my($self) = @_; my $LENPOS = $self->{alg} <= 256 ? 448 : 896; _SETBIT($self, $self->{blockcnt}++); while ($self->{blockcnt} > $LENPOS) { if ($self->{blockcnt} < $self->{blocksize}) { _CLRBIT($self, $self->{blockcnt}++); } else { &{$self->{sha}}($self, $self->{block}); $self->{block} = ""; $self->{blockcnt} = 0; } } while ($self->{blockcnt} < $LENPOS) { _CLRBIT($self, $self->{blockcnt}++); } if ($self->{blocksize} > 512) { $self->{block} .= pack("N", $self->{lenhh} & $MAX32); $self->{block} .= pack("N", $self->{lenhl} & $MAX32); } $self->{block} .= pack("N", $self->{lenlh} & $MAX32); $self->{block} .= pack("N", $self->{lenll} & $MAX32); &{$self->{sha}}($self, $self->{block}); } sub _shadigest { my($self) = @_; _digcpy($self); $self->{digest} } sub _shahex { my($self) = @_; _digcpy($self); join("", unpack("H*", $self->{digest})); } sub _shabase64 { my($self) = @_; _digcpy($self); my $b64 = pack("u", $self->{digest}); $b64 =~ s/^.//mg; $b64 =~ s/\n//g; $b64 =~ tr|` -_|AA-Za-z0-9+/|; my $numpads = (3 - length($self->{digest}) % 3) % 3; $b64 =~ s/.{$numpads}$// if $numpads; $b64; } sub _shadsize { my($self) = @_; $self->{digestlen} } sub _shacpy { my($to, $from) = @_; $to->{alg} = $from->{alg}; $to->{sha} = $from->{sha}; $to->{H} = [@{$from->{H}}]; $to->{block} = $from->{block}; $to->{blockcnt} = $from->{blockcnt}; $to->{blocksize} = $from->{blocksize}; for (qw(lenhh lenhl lenlh lenll)) { $to->{$_} = $from->{$_} } $to->{digestlen} = $from->{digestlen}; $to; } sub _shadup { my($self) = @_; my($copy); _shacpy($copy, $self) } # sub _shadump { # my $file = shift; # $file = "-" if (!defined($file) || $file eq ""); # my $fh = FileHandle->new($file, "w") or return; # my $self = shift; # my $is32bit = $self->{alg} <= 256; # my $fmt = $is32bit ? ":%08x" : ":%016x"; # printf $fh "alg:%d\n", $self->{alg}; # printf $fh "H"; # for (@{$self->{H}}) { printf $fh $fmt, $is32bit ? $_ & $MAX32 : +$_ } # printf $fh "\nblock"; # my @c = unpack("C*", $self->{block}); # push(@c, 0x00) while scalar(@c) < ($self->{blocksize} >> 3); # for (@c) { printf $fh ":%02x", $_ } # printf $fh "\nblockcnt:%u\n", $self->{blockcnt}; # printf $fh "lenhh:%lu\n", $self->{lenhh} & $MAX32; # printf $fh "lenhl:%lu\n", $self->{lenhl} & $MAX32; # printf $fh "lenlh:%lu\n", $self->{lenlh} & $MAX32; # printf $fh "lenll:%lu\n", $self->{lenll} & $MAX32; # close($fh); # $self; # } sub _match { my($fh, $tag) = @_; my @f; while (<$fh>) { s/^\s+//; s/\s+$//; next if (/^(#|$)/); @f = split(/[:\s]+/); last; } shift(@f) eq $tag or return; return(@f); } # sub _shaload { # my $file = shift; # $file = "-" if (!defined($file) || $file eq ""); # my $fh = FileHandle->new($file, "r") or return; # my @f = _match($fh, "alg") or return; # my $self = _shaopen(shift(@f)) or return; # @f = _match($fh, "H") or return; # my $numxdigits = $self->{alg} <= 256 ? 8 : 16; # for (@f) { $_ = "0" . $_ while length($_) < $numxdigits } # for (@f) { $_ = substr($_, 1) while length($_) > $numxdigits } # @{$self->{H}} = map { $self->{alg} <= 256 ? hex($_) : # ((hex(substr($_, 0, 8)) << 16) << 16) | # hex(substr($_, 8)) } @f; # @f = _match($fh, "block") or return; # for (@f) { $self->{block} .= chr(hex($_)) } # @f = _match($fh, "blockcnt") or return; # $self->{blockcnt} = shift(@f); # $self->{block} = substr($self->{block},0,_BYTECNT($self->{blockc +nt})); # @f = _match($fh, "lenhh") or return; # $self->{lenhh} = shift(@f); # @f = _match($fh, "lenhl") or return; # $self->{lenhl} = shift(@f); # @f = _match($fh, "lenlh") or return; # $self->{lenlh} = shift(@f); # @f = _match($fh, "lenll") or return; # $self->{lenll} = shift(@f); # close($fh); # $self; # } # ref. src/hmac.c from Digest::SHA sub _hmacopen { my($alg, $key) = @_; my($self); $self->{isha} = _shaopen($alg) or return; $self->{osha} = _shaopen($alg) or return; if (length($key) > $self->{osha}->{blocksize} >> 3) { $self->{ksha} = _shaopen($alg) or return; _shawrite($key, length($key) << 3, $self->{ksha}); _shafinish($self->{ksha}); $key = _shadigest($self->{ksha}); } $key .= chr(0x00) while length($key) < $self->{osha}->{blocksize} >> 3; my @k = unpack("C*", $key); for (@k) { $_ ^= 0x5c } _shawrite(pack("C*", @k), $self->{osha}->{blocksize}, $self->{osha +}); for (@k) { $_ ^= (0x5c ^ 0x36) } _shawrite(pack("C*", @k), $self->{isha}->{blocksize}, $self->{isha +}); $self; } sub _hmacwrite { my($bitstr, $bitcnt, $self) = @_; _shawrite($bitstr, $bitcnt, $self->{isha}); } sub _hmacfinish { my($self) = @_; _shafinish($self->{isha}); _shawrite(_shadigest($self->{isha}), $self->{isha}->{digestlen} << 3, $self->{osha}); _shafinish($self->{osha}); } sub _hmacdigest { my($self) = @_; _shadigest($self->{osha}) } sub _hmachex { my($self) = @_; _shahex($self->{osha}) } sub _hmacbase64 { my($self) = @_; _shabase64($self->{osha}) } # SHA and HMAC-SHA functions my @suffix_extern = ("", "_hex", "_base64"); my @suffix_intern = ("digest", "hex", "base64"); my($i, $alg); for $alg (1, 224, 256, 384, 512) { for $i (0 .. 2) { my $fcn = 'sub sha' . $alg . $suffix_extern[$i] . ' { my $state = _shaopen(' . $alg . ') or return; for (@_) { _shawrite($_, length($_) << 3, $state) } _shafinish($state); _sha' . $suffix_intern[$i] . '($state); }'; eval($fcn); push(@EXPORT_OK, 'sha' . $alg . $suffix_extern[$i]); $fcn = 'sub hmac_sha' . $alg . $suffix_extern[$i] . ' { my $state = _hmacopen(' . $alg . ', pop(@_)) or return; for (@_) { _hmacwrite($_, length($_) << 3, $state) } _hmacfinish($state); _hmac' . $suffix_intern[$i] . '($state); }'; eval($fcn); push(@EXPORT_OK, 'hmac_sha' . $alg . $suffix_extern[$i]); } } # OOP methods sub hashsize { my $self = shift; _shadsize($self) << 3 } sub algorithm { my $self = shift; $self->{alg} } sub add { my $self = shift; for (@_) { _shawrite($_, length($_) << 3, $self) } $self; } sub digest { my $self = shift; _shafinish($self); my $rsp = _shadigest($self); _sharewind($self); $rsp; } sub _Hexdigest { my $self = shift; _shafinish($self); my $rsp = _shahex($self); _sharewind($self); $rsp; } sub _B64digest { my $self = shift; _shafinish($self); my $rsp = _shabase64($self); _sharewind($self); $rsp; } sub new { my($class, $alg) = @_; $alg =~ s/\D+//g if defined $alg; if (ref($class)) { # instance method unless (defined($alg) && ($alg != $class->algorithm)) { _sharewind($class); return($class); } my $self = _shaopen($alg) or return; return(_shacpy($class, $self)); } $alg = 1 unless defined $alg; my $self = _shaopen($alg) or return; bless($self, $class); $self; } sub clone { my $self = shift; my $copy = _shadup($self) or return; bless($copy, ref($self)); return($copy); } *reset = \&new; sub add_bits { my($self, $data, $nbits) = @_; unless (defined $nbits) { $nbits = length($data); $data = pack("B*", $data); } _shawrite($data, $nbits, $self); return($self); } sub _bail { my $msg = shift; require Carp; Carp::croak("$msg: $!"); } sub _addfile { my ($self, $handle) = @_; my $n; my $buf = ""; while (($n = read($handle, $buf, 4096))) { $self->add($buf); } _bail("Read failed") unless defined $n; $self; } sub _Addfile { my ($self, $file, $mode) = @_; return(_addfile($self, $file)) unless ref(\$file) eq 'SCALAR'; $mode = defined($mode) ? $mode : ""; my ($binary, $portable) = map { $_ eq $mode } ("b", "p"); my $text = -T $file; local *FH; # protect any leading or trailing whitespace in $file; # otherwise, 2-arg "open" will ignore them $file =~ s#^(\s)#./$1#; open(FH, "< $file\0") or _bail("Open failed"); binmode(FH) if $binary || $portable; unless ($portable && $text) { $self->_addfile(*FH); close(FH); return($self); } my ($n1, $n2); my ($buf1, $buf2) = ("", ""); while (($n1 = read(FH, $buf1, 4096))) { while (substr($buf1, -1) eq "\015") { $n2 = read(FH, $buf2, 4096); _bail("Read failed") unless defined $n2; last unless $n2; $buf1 .= $buf2; } $buf1 =~ s/\015?\015\012/\012/g; # DOS/Windows $buf1 =~ s/\015/\012/g; # early MacOS $self->add($buf1); } _bail("Read failed") unless defined $n1; close(FH); $self; } # sub dump { # my $self = shift; # my $file = shift || ""; # _shadump($file, $self) or return; # return($self); # } # sub load { # my $class = shift; # my $file = shift || ""; # if (ref($class)) { # instance method # my $self = _shaload($file) or return; # return(_shacpy($class, $self)); # } # my $self = _shaload($file) or return; # bless($self, $class); # return($self); # } 1; __END__ =head1 NAME Digest::SHA::PurePerl - Perl implementation of SHA-1/224/256/384/512 =head1 SYNOPSIS In programs: # Functional interface use Digest::SHA::PurePerl qw(sha1 sha1_hex sha1_base64 ...); $digest = sha1($data); $digest = sha1_hex($data); $digest = sha1_base64($data); $digest = sha256($data); $digest = sha384_hex($data); $digest = sha512_base64($data); # Object-oriented use Digest::SHA::PurePerl; $sha = Digest::SHA::PurePerl->new($alg); $sha->add($data); # feed data into stream $sha->addfile(*F); $sha->addfile($filename); $sha->add_bits($bits); $sha->add_bits($data, $nbits); $sha_copy = $sha->clone; # if needed, make copy of $sha->dump($file); # current digest state, $sha->load($file); # or save it on disk $digest = $sha->digest; # compute digest $digest = $sha->hexdigest; $digest = $sha->b64digest; From the command line: $ shasum files $ shasum --help =head1 SYNOPSIS (HMAC-SHA) # Functional interface only use Digest::SHA::PurePerl qw(hmac_sha1 hmac_sha1_hex ...); $digest = hmac_sha1($data, $key); $digest = hmac_sha224_hex($data, $key); $digest = hmac_sha256_base64($data, $key); =head1 ABSTRACT Digest::SHA::PurePerl is a complete implementation of the NIST Secure Hash Standard. It gives Perl programmers a convenient way to calculate SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 message digests. The module can handle all types of input, including partial-byte data. =head1 DESCRIPTION Digest::SHA::PurePerl is written entirely in Perl. If your platform has a C compiler, you should install the functionally equivalent (but much faster) L<Digest::SHA> module. The programming interface is easy to use: it's the same one found in CPAN's L<Digest> module. So, if your applications currently use L<Digest::MD5> and you'd prefer the stronger security of SHA, it's a simple matter to convert them. The interface provides two ways to calculate digests: all-at-once, or in stages. To illustrate, the following short program computes the SHA-256 digest of "hello world" using each approach: use Digest::SHA::PurePerl qw(sha256_hex); $data = "hello world"; @frags = split(//, $data); # all-at-once (Functional style) $digest1 = sha256_hex($data); # in-stages (OOP style) $state = Digest::SHA::PurePerl->new(256); for (@frags) { $state->add($_) } $digest2 = $state->hexdigest; print $digest1 eq $digest2 ? "whew!\n" : "oops!\n"; To calculate the digest of an n-bit message where I<n> is not a multiple of 8, use the I<add_bits()> method. For example, consider the 446-bit message consisting of the bit-string "110" repeated 148 times, followed by "11". Here's how to display its SHA-1 digest: use Digest::SHA::PurePerl; $bits = "110" x 148 . "11"; $sha = Digest::SHA::PurePerl->new(1)->add_bits($bits); print $sha->hexdigest, "\n"; Note that for larger bit-strings, it's more efficient to use the two-argument version I<add_bits($data, $nbits)>, where I<$data> is in the customary packed binary format used for Perl strings. The module also lets you save intermediate SHA states to disk, or display them on standard output. The I<dump()> method generates portable, human-readable text describing the current state of computation. You can subsequently retrieve the file with I<load()> to resume where the calculation left off. To see what a state description looks like, just run the following: use Digest::SHA::PurePerl; Digest::SHA::PurePerl->new->add("Shaw" x 1962)->dump; As an added convenience, the Digest::SHA::PurePerl module offers routines to calculate keyed hashes using the HMAC-SHA-1/224/256/384/51 +2 algorithms. These services exist in functional form only, and mimic the style and behavior of the I<sha()>, I<sha_hex()>, and I<sha_base64()> functions. # Test vector from draft-ietf-ipsec-ciph-sha-256-01.txt use Digest::SHA::PurePerl qw(hmac_sha256_hex); print hmac_sha256_hex("Hi There", chr(0x0b) x 32), "\n"; =head1 NIST STATEMENT ON SHA-1 I<NIST was recently informed that researchers had discovered a way to "break" the current Federal Information Processing Standard SHA-1 algorithm, which has been in effect since 1994. The researchers have not yet published their complete results, so NIST has not confirmed these findings. However, the researchers are a reputable research team with expertise in this area.> I<Due to advances in computing power, NIST already planned to phase out SHA-1 in favor of the larger and stronger hash functions (SHA-224, SHA-256, SHA-384 and SHA-512) by 2010. New developments should use the larger and stronger hash functions.> ref. L<http://www.csrc.nist.gov/pki/HashWorkshop/NIST%20Statement/Burr +_Mar2005.html> =head1 PADDING OF BASE64 DIGESTS By convention, CPAN Digest modules do B<not> pad their Base64 output. Problems can occur when feeding such digests to other software that expects properly padded Base64 encodings. For the time being, any necessary padding must be done by the user. Fortunately, this is a simple operation: if the length of a Base64-enc +oded digest isn't a multiple of 4, simply append "=" characters to the end of the digest until it is: while (length($b64_digest) % 4) { $b64_digest .= '='; } To illustrate, I<sha256_base64("abc")> is computed to be ungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0 which has a length of 43. So, the properly padded version is ungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0= =head1 EXPORT None by default. =head1 EXPORTABLE FUNCTIONS Provided your Perl installation supports 64-bit integers, all of these functions will be available for use. Otherwise, you won't be able to perform the SHA-384 and SHA-512 transforms, both of which require 64-bit operations. I<Functional style> =over 4 =item B<sha1($data, ...)> =item B<sha224($data, ...)> =item B<sha256($data, ...)> =item B<sha384($data, ...)> =item B<sha512($data, ...)> Logically joins the arguments into a single string, and returns its SHA-1/224/256/384/512 digest encoded as a binary string. =item B<sha1_hex($data, ...)> =item B<sha224_hex($data, ...)> =item B<sha256_hex($data, ...)> =item B<sha384_hex($data, ...)> =item B<sha512_hex($data, ...)> Logically joins the arguments into a single string, and returns its SHA-1/224/256/384/512 digest encoded as a hexadecimal string. =item B<sha1_base64($data, ...)> =item B<sha224_base64($data, ...)> =item B<sha256_base64($data, ...)> =item B<sha384_base64($data, ...)> =item B<sha512_base64($data, ...)> Logically joins the arguments into a single string, and returns its SHA-1/224/256/384/512 digest encoded as a Base64 string. It's important to note that the resulting string does B<not> contain the padding characters typical of Base64 encodings. This omission is deliberate, and is done to maintain compatibility with the family of CPAN Digest modules. See L</"PADDING OF BASE64 DIGESTS"> for details. =back I<OOP style> =over 4 =item B<new($alg)> Returns a new Digest::SHA::PurePerl object. Allowed values for I<$alg> are 1, 224, 256, 384, or 512. It's also possible to use common string representations of the algorithm (e.g. "sha256", "SHA-384"). If the argument is missing, SHA-1 will be used by default. Invoking I<new> as an instance method will not create a new object; instead, it will simply reset the object to the initial state associated with I<$alg>. If the argument is missing, the object will continue using the same algorithm that was selected at creation. =item B<reset($alg)> This method has exactly the same effect as I<new($alg)>. In fact, I<reset> is just an alias for I<new>. =item B<hashsize> Returns the number of digest bits for this object. The values are 160, 224, 256, 384, and 512 for SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512, respectively. =item B<algorithm> Returns the digest algorithm for this object. The values are 1, 224, 256, 384, and 512 for SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512, respectively. =item B<clone> Returns a duplicate copy of the object. =item B<add($data, ...)> Logically joins the arguments into a single string, and uses it to update the current digest state. In other words, the following statements have the same effect: $sha->add("a"); $sha->add("b"); $sha->add("c"); $sha->add("a")->add("b")->add("c"); $sha->add("a", "b", "c"); $sha->add("abc"); The return value is the updated object itself. =item B<add_bits($data, $nbits)> =item B<add_bits($bits)> Updates the current digest state by appending bits to it. The return value is the updated object itself. The first form causes the most-significant I<$nbits> of I<$data> to be appended to the stream. The I<$data> argument is in the customary binary format used for Perl strings. The second form takes an ASCII string of "0" and "1" characters as its argument. It's equivalent to $sha->add_bits(pack("B*", $bits), length($bits)); So, the following two statements do the same thing: $sha->add_bits("111100001010"); $sha->add_bits("\xF0\xA0", 12); =item B<addfile(*FILE)> Reads from I<FILE> until EOF, and appends that data to the current state. The return value is the updated object itself. =item B<addfile($filename [, $mode])> Reads the contents of I<$filename>, and appends that data to the curre +nt state. The return value is the updated object itself. By default, I<$filename> is simply opened and read; no special modes or I/O disciplines are used. To change this, set the optional I<$mode +> argument to one of the following values: "b" read file in binary mode "p" use portable mode The "p" mode is handy since it ensures that the digest value of I<$filename> will be the same when computed on different operating systems. It accomplishes this by internally translating all newlines +in text files to UNIX format before calculating the digest. Binary files are read in raw mode with no translation whatsoever. For a fuller discussion of newline formats, refer to CPAN module L<File::LocalizeNewlines>. Its "universal line separator" regex forms the basis of I<addfile>'s portable mode processing. =item B<dump($filename)> Provides persistent storage of intermediate SHA states by writing a portable, human-readable representation of the current state to I<$filename>. If the argument is missing, or equal to the empty string, the state information will be written to STDOUT. =item B<load($filename)> Returns a Digest::SHA::PurePerl object representing the intermediate SHA state that was previously dumped to I<$filename>. If called as a class method, a new object is created; if called as an instance method, the object is reset to the state contained in I<$filename>. If the argument is missing, or equal to the empty string, the state information will be read from STDIN. =item B<digest> Returns the digest encoded as a binary string. Note that the I<digest> method is a read-once operation. Once it has been performed, the Digest::SHA::PurePerl object is automatically reset in preparation for calculating another digest value. Call I<$sha-E<gt>clone-E<gt>digest> if it's necessary to preserve the original digest state. =item B<hexdigest> Returns the digest encoded as a hexadecimal string. Like I<digest>, this method is a read-once operation. Call I<$sha-E<gt>clone-E<gt>hexdigest> if it's necessary to preserve the original digest state. This method is inherited if L<Digest::base> is installed on your system. Otherwise, a functionally equivalent substitute is used. =item B<b64digest> Returns the digest encoded as a Base64 string. Like I<digest>, this method is a read-once operation. Call I<$sha-E<gt>clone-E<gt>b64digest> if it's necessary to preserve the original digest state. This method is inherited if L<Digest::base> is installed on your system. Otherwise, a functionally equivalent substitute is used. It's important to note that the resulting string does B<not> contain the padding characters typical of Base64 encodings. This omission is deliberate, and is done to maintain compatibility with the family of CPAN Digest modules. See L</"PADDING OF BASE64 DIGESTS"> for details. =back I<HMAC-SHA-1/224/256/384/512> =over 4 =item B<hmac_sha1($data, $key)> =item B<hmac_sha224($data, $key)> =item B<hmac_sha256($data, $key)> =item B<hmac_sha384($data, $key)> =item B<hmac_sha512($data, $key)> Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>, with the result encoded as a binary string. Multiple I<$data> arguments are allowed, provided that I<$key> is the last argument in the list. =item B<hmac_sha1_hex($data, $key)> =item B<hmac_sha224_hex($data, $key)> =item B<hmac_sha256_hex($data, $key)> =item B<hmac_sha384_hex($data, $key)> =item B<hmac_sha512_hex($data, $key)> Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>, with the result encoded as a hexadecimal string. Multiple I<$data> arguments are allowed, provided that I<$key> is the last argument in the list. =item B<hmac_sha1_base64($data, $key)> =item B<hmac_sha224_base64($data, $key)> =item B<hmac_sha256_base64($data, $key)> =item B<hmac_sha384_base64($data, $key)> =item B<hmac_sha512_base64($data, $key)> Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>, with the result encoded as a Base64 string. Multiple I<$data> arguments are allowed, provided that I<$key> is the last argument in the list. It's important to note that the resulting string does B<not> contain the padding characters typical of Base64 encodings. This omission is deliberate, and is done to maintain compatibility with the family of CPAN Digest modules. See L</"PADDING OF BASE64 DIGESTS"> for details. =back =head1 SEE ALSO L<Digest>, L<Digest::SHA> The Secure Hash Standard (FIPS PUB 180-2) can be found at: L<http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchange +notice.pdf> The Keyed-Hash Message Authentication Code (HMAC): L<http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf> =head1 AUTHOR Mark Shelor <mshelor@cpan.org> =head1 ACKNOWLEDGMENTS The author is particularly grateful to Gisle Aas Chris Carey Alexandr Ciornii Jim Doble Julius Duque Jeffrey Friedl Robert Gilmour Brian Gladman Adam Kennedy Andy Lester Alex Muntada Steve Peters Chris Skiscim Martin Thurn Gunnar Wolf Adam Woodbury for their valuable comments and suggestions. =head1 COPYRIGHT AND LICENSE Copyright (C) 2003-2008 Mark Shelor This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. L<perlartistic> =cut

In reply to Re^6: Undefined subroutine on ARM but not i686 by cbanker
in thread Undefined subroutine on ARM but not i686 by cbanker

Title:
Use:  <p> text here (a paragraph) </p>
and:  <code> code here </code>
to format your post, it's "PerlMonks-approved HTML":



  • Posts are HTML formatted. Put <p> </p> tags around your paragraphs. Put <code> </code> tags around your code and data!
  • Titles consisting of a single word are discouraged, and in most cases are disallowed outright.
  • Read Where should I post X? if you're not absolutely sure you're posting in the right place.
  • Please read these before you post! —
  • Posts may use any of the Perl Monks Approved HTML tags:
    a, abbr, b, big, blockquote, br, caption, center, col, colgroup, dd, del, details, div, dl, dt, em, font, h1, h2, h3, h4, h5, h6, hr, i, ins, li, ol, p, pre, readmore, small, span, spoiler, strike, strong, sub, summary, sup, table, tbody, td, tfoot, th, thead, tr, tt, u, ul, wbr
  • You may need to use entities for some characters, as follows. (Exception: Within code tags, you can put the characters literally.)
            For:     Use:
    & &amp;
    < &lt;
    > &gt;
    [ &#91;
    ] &#93;
  • Link using PerlMonks shortcuts! What shortcuts can I use for linking?
  • See Writeup Formatting Tips and other pages linked from there for more info.