in reply to Re: Constructing complex numbers using recursion
in thread Constructing complex numbers using recursion
sub constructComplex { my $value1 = $_[0]; my $value2 = $_[1]; my ($real1, $real2, $complex1, $complex2, $magnitude1, $magnitude2 +, $angle1, $angle2, @constructed, @constructedvalue1Polar, @construc +tedvalue1Rect, @constructedvalue2Polar, @constructedvalue2Rect, $valu +e1isRectangular, $value2isRectangular); #if value1 is in rectangular form if(rindex($value1, "_") < 0) { $value1isRectangular = 1; } #if value1 is in polar form if(rindex($value1, "_") > 0) { $value1isRectangular = 0; $magnitude1 = substr($value1, 0, index($value1, " ")); $angle1 =substr($value1, (rindex($value1, " ") + 1), length($v +alue1)); #@constructedvalue1Polar = &constructComplex(&PolarToRect($val +ue1)); #$real1 = $constructedvalue1Polar[0]; #$complex1 = $constructedvalue1Polar[2]; } #if value2 is in rectangular form if(rindex($value2, "_") < 0) { $value2isRectangular = 1; } #if value2 is in polar form if(rindex($value2, "_") > 0) { $value2isRectangular = 0; $magnitude2 = substr($value2, 0, index($value2, " ")); $angle2 =substr($value2, (rindex($value2, " ") + 1), length($v +alue2)); } ############## if($value1isRectangular) { #lowercases everything $value1 = lc($value1); #if a j is found, turns it into an i if(rindex($value1, "j") > 0) { substr ($value1, rindex($value1, "j"), 1, "i"); } #if there is no space, and there is no i, then there must ONLY + be a real part if(index($value1, " ") < 0 && index($value1, "i") < 0) { $real1 = substr($value1, 0, length($value1)); } #if there is no space, but there is an i, then there is no rea +l part, real is 0 elsif(index($value1, " ") < 0 && index($value1, "i") > 0) { $real1 = "0"; } #else, there is a space, meaning both real and complex else { $real1 = substr($value1, 0, index($value1, " ")); } #"7 + i" if((index($value1, " ") > 0) && (index($value1, "i") > 0) && ( +(rindex($value1, " ") + 1) == index($value1, "i"))) { $complex1 = "1"; } #"7 + -i" and "-i" #elsif((index($value1, " ") > 0) && (index($value1, "i") > 0) +&& (index($value1, "-") > 0) && ((rindex($value1, " ") + 1) == rindex +($value1, "-")) && ((rindex($value1, "-") + 1) == rindex($value1, "i" +))) elsif(index($value1, "-i") != -1) { $complex1 = "-1"; } #"i" elsif((index($value1, "i") == 0)) { $complex1 = "1"; } #"-Bi" elsif((index($value1, " ") < 0) && (index($value1, "i") > 0) & +& (index($value1, "-") != -1) && (index($value1, "i") != 0) && ((inde +x($value1, "-") +1) != index($value1, "i"))) { $complex1 = substr($value1, 0, index($value1, "i")); } #"Bi" elsif((index($value1, " ") < 0) && (index($value1, "i") > 0) & +& (index($value1, "-") < 0) && (index($value1, "i") != 0)) { $complex1 = substr($value1, 0, index($value1, "i")); } #"30" elsif(index($value1, "i") < 0) { $complex1 = 0 } else { $complex1 = substr($value1, (rindex($value1, " ") + 1), in +dex($value1, "i")); } #if negative by sign, changes element to negative if(index($value1, " - ") > 0) { $complex1 = -$complex1; } } if($value2isRectangular) { #lowercases everything $value2 = lc($value2); #if a j is found, turns it into an i if(rindex($value2, "j") > 0) { substr ($value2, rindex($value2, "j"), 1, "i"); } #if there is no space, and there is no i, then there must ONLY + be a real part if(index($value2, " ") < 0 && index($value2, "i") < 0) { $real2 = substr($value2, 0, length($value2)); } #if there is no space, but there is an i, then there is no rea +l part, real is 0 elsif(index($value2, " ") < 0 && index($value2, "i") > 0) { $real2 = "0"; } #else, there is a space, meaning both real and complex else { $real2 = substr($value2, 0, index($value2, " ")); } #"7 + i" if((index($value2, " ") > 0) && (index($value2, "i") > 0) && ( +(rindex($value2, " ") + 1) == index($value2, "i"))) { $complex2 = "1"; } #"7 + -i" and "-i" #elsif((index($value2, " ") > 0) && (index($value2, "i") > 0) +&& (index($value2, "-") > 0) && ((rindex($value2, " ") + 1) == rindex +($value2, "-")) && ((rindex($value2, "-") + 1) == rindex($value2, "i" +))) elsif(index($value2, "-i") != -1) { $complex2 = "-1"; } #"i" elsif((index($value2, "i") == 0)) { $complex2 = "1"; } #"-Bi" elsif((index($value2, " ") < 0) && (index($value2, "i") > 0) & +& (index($value2, "-") != -1) && (index($value2, "i") != 0) && ((inde +x($value2, "-") +1) != index($value2, "i"))) { $complex2 = substr($value2, 0, index($value2, "i")); } #"Bi" elsif((index($value2, " ") < 0) && (index($value2, "i") > 0) & +& (index($value2, "-") < 0) && (index($value2, "i") != 0)) { $complex2 = substr($value2, 0, index($value2, "i")); } #"30" elsif(index($value2, "i") < 0) { $complex2 = 0 } else { $complex2 = substr($value2, (rindex($value2, " ") + 1), in +dex($value2, "i")); } #if negative by sign, changes element to negative if(index($value2, " - ") > 0) { $complex2 = -$complex2; } } #if($real1 ||= 0) {$real1 = 0}; #if($real2 ||= 0) {$real2 = 0}; #if($complex1 ||= 0) {$complex1 = 0}; #if($complex2 ||= 0) {$complex2 = 0}; $constructed[0] = $real1; $constructed[1] = $real2; $constructed[2] = $complex1; $constructed[3] = $complex2; $constructed[4] = $magnitude1; $constructed[5] = $magnitude2; $constructed[6] = $angle1; $constructed[7] = $angle2; #return "R1: " . $real1 . " C1: " . $complex1 . " R2: " . $real2 . " C +2: " . $complex2 . " M1: " . $magnitude1 . " A1: " . $angle1 . " M2: +" . $magnitude2 . " A2: " . $angle2; return @constructed; } sub PolarToRect { my ($value1, $real1, $complex1, $magnitude1, $angle1, $complex, @const +ruct); $value1 = $_[0]; @construct = &constructComplex($value1); $magnitude1 = $construct[4]; $angle1 = $construct[6]; #return "M: " . $magnitude1 . " A: " . $angle1; $real1 = $magnitude1*cos($angle1*($pi/180)); $complex1 = $magnitude1*sin($angle1*($pi/180)); #return "R: " . $real1 . " C: " . $complex1; if($complex1 < 0) { $complex = $real1 . " - " . -$complex1 . "i"; } else { $complex = $real1 . " + " . $complex1 . "i"; } } my $z = "5 _ 36.87"; my $y = "6 _ 45.67"; print PolarToRect($z) . "\n";
|
|---|
| Replies are listed 'Best First'. | |
|---|---|
|
Re^3: Constructing complex numbers using recursion
by GrandFather (Saint) on Nov 08, 2005 at 05:42 UTC | |
|
Re^3: Constructing complex numbers using recursion
by graff (Chancellor) on Nov 08, 2005 at 06:35 UTC |