in reply to Re^2: magic squares
in thread magic squares
By rotating and reflecting we can make the largest corner be x+y, and we can insist that x-z > x-2y+z. In this case we have 0 < z < y The condition that all values be in the range 1..26 is satisfied if 1 <= x-2y+z < x+2y-z <= 26. Uniqueness is satisfied if 2z != y.x+y x-z x-y+z x-2y+z x x+2y-z x+y-z x+z x-y
We can actually make a stronger statement. If 2z < y, then the elements fall in the order x-2y+z, x-y, x-y+z, x-z, x, x+z, x+y-z, x+y, x+2y-z and if y < 2z then the elements fall in the order x-2y+z, x-y, x-z, x-y+z, x, x+y-z, x+z x+y, x+2y-z.
With this many conditions, it should not be hard to enumerate the magic squares up to symmetry. And with some cleverness, I believe you don't even have to enumerate them all.
|
---|
Replies are listed 'Best First'. | |
---|---|
Re^4: magic squares
by Limbic~Region (Chancellor) on Apr 08, 2009 at 15:28 UTC | |
by tilly (Archbishop) on Apr 08, 2009 at 16:08 UTC | |
by Limbic~Region (Chancellor) on Apr 08, 2009 at 23:50 UTC |