in reply to Efficient enumeration of pandigital fractions
Here's a first pass at it.
It does partial math (same number of digits on both sides) to
cut off further consideration because of duplicates or 0.
It does base 18 in under 3 minutes.
#!/usr/bin/perl -l # https://perlmonks.org/?node_id=1218964 use strict; use warnings; use POSIX; my $base = shift // 10; my @numbers = (0..9, 'a'..'z')[0..$base-1]; my $numberlength = $base - 1 >> 1; my $pattern = '-' x $numberlength . '=' . '-' x $numberlength . '*'; sub inbase { my ($n, $b) = @_; my $ans = ''; while($n > 0) { $ans = $numbers[$n % $b] . $ans; $n = int $n / $base; } $ans || 0; } # dddd=dddd*d # for base 10 my $solutions = my $count = 0; my @queue = map "$pattern$_", @numbers[2..$#numbers]; while( @queue ) { $count++; $_ = shift @queue; /(\w).*\1/ and next; if( !/.*=.*\K-/ ) { print; $solutions++; next; } my ($before, $after) = ($`, $'); my $mul = POSIX::strtol( substr( $after, -1 ), $base ); for my $d ( @numbers[1..$#numbers] ) { $_ =~ $d and next; my $new = "$before$d$after"; $new =~ /=-*(\w+)/ or next;; my $len = length $1; my $prod = POSIX::strtol( $1, $base ) * $mul; my $baseprod = inbase( $prod, $base ); length $baseprod > $numberlength and next; substr $new, $numberlength - $len, $len, substr $baseprod, -$len; $new =~ /0|(\w).*\1/ and next; push @queue, $new; } } print "\nsteps $count solutions $solutions";
|
|---|
| Replies are listed 'Best First'. | |
|---|---|
|
Re^2: Efficient enumeration of pandigital fractions
by kikuchiyo (Hermit) on Jul 21, 2018 at 20:40 UTC |